Format

Send to

Choose Destination
Neuroimage. 2014 Nov 1;101:225-35. doi: 10.1016/j.neuroimage.2014.07.009. Epub 2014 Jul 12.

Brain representations for acquiring and recalling visual-motor adaptations.

Author information

1
Department of Neuroscience, Brown University, Providence, RI 02912 USA.
2
Department of Neuroscience, Brown University, Providence, RI 02912 USA; Institute for Brain Science, Brown University, Providence, RI 02912 USA; Center for Neurorestoration and Neurotechnology, Providence Veterans Administration Medical Center, Providence, RI 02908 USA. Electronic address: Jerome_Sanes@brown.edu.

Abstract

Humans readily learn and remember new motor skills, a process that likely underlies adaptation to changing environments. During adaptation, the brain develops new sensory-motor relationships, and if consolidation occurs, a memory of the adaptation can be retained for extended periods. Considerable evidence exists that multiple brain circuits participate in acquiring new sensory-motor memories, though the networks engaged in recalling these and whether the same brain circuits participate in their formation and recall have less clarity. To address these issues, we assessed brain activation with functional MRI while young healthy adults learned and recalled new sensory-motor skills by adapting to world-view rotations of visual feedback that guided hand movements. We found cerebellar activation related to adaptation rate, likely reflecting changes related to overall adjustments to the visual rotation. A set of parietal and frontal regions, including inferior and superior parietal lobules, premotor area, supplementary motor area and primary somatosensory cortex, exhibited non-linear learning-related activation that peaked in the middle of the adaptation phase. Activation in some of these areas, including the inferior parietal lobule, intra-parietal sulcus and somatosensory cortex, likely reflected actual learning, since the activation correlated with learning after-effects. Lastly, we identified several structures having recall-related activation, including the anterior cingulate and the posterior putamen, since the activation correlated with recall efficacy. These findings demonstrate dynamic aspects of brain activation patterns related to formation and recall of a sensory-motor skill, such that non-overlapping brain regions participate in distinctive behavioral events.

KEYWORDS:

Event-related functional MRI; Learning; Recall; Visual–motor adaptation

PMID:
25019676
PMCID:
PMC4165698
DOI:
10.1016/j.neuroimage.2014.07.009
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center