Multiplexed determination of human growth hormone and prolactin at a label free electrochemical immunosensor using dual carbon nanotube-screen printed electrodes modified with gold and PEDOT nanoparticles

Analyst. 2014 Sep 21;139(18):4556-63. doi: 10.1039/c4an00221k.

Abstract

A label-free dual electrochemical immunosensor was constructed for the multiplexed determination of human growth (hGH) and prolactin (PRL) hormones. The immunosensor used an electrochemical platform composed of carbon nanotube-screen printed carbon electrodes (CNT/SPCEs) modified with poly(ethylene-dioxythiophene) (PEDOT) and gold nanoparticles, on which the corresponding hGH and PRL antibodies were immobilized. The affinity reactions were monitored by measuring the decrease in the differential pulse voltammetric oxidation response of the redox probe dopamine. The experimental variables involved in the preparation of both AuNP/PEDOT/CNT/SPC modified electrodes and the dual immunosensor were optimized. The immunosensor exhibited an improved analytical performance for hGH and PRL with respect to other electrochemical immunosensor designs, showing wide ranges of linearity and low detection limits of 4.4 and 0.22 pg mL(-1), respectively. An excellent selectivity against other hormones and in the presence of ascorbic and uric acids was found. The usefulness of the dual immunosensor for the simultaneous analysis of hGH and PRL was demonstrated by analyzing human serum and saliva samples spiked with the hormones at different concentration levels.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bridged Bicyclo Compounds, Heterocyclic / chemistry
  • Electrochemical Techniques / instrumentation*
  • Electrodes
  • Gold / chemistry
  • Human Growth Hormone / analysis*
  • Human Growth Hormone / blood*
  • Humans
  • Immunoassay / instrumentation
  • Nanoparticles / chemistry
  • Nanotubes, Carbon / chemistry
  • Polymers / chemistry
  • Prolactin / analysis*
  • Prolactin / blood*
  • Saliva / chemistry*

Substances

  • Bridged Bicyclo Compounds, Heterocyclic
  • Nanotubes, Carbon
  • Polymers
  • poly(3,4-ethylene dioxythiophene)
  • Human Growth Hormone
  • Gold
  • Prolactin