Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell. 2014 Jul 17;158(2):383-396. doi: 10.1016/j.cell.2014.04.052. Epub 2014 Jul 10.

Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis.

Author information

1
Department of Pediatrics, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine and Howard Hughes Medical Institute, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
2
Department of Pediatrics, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine and Howard Hughes Medical Institute, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
3
Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
4
Department of Pediatrics, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine and Howard Hughes Medical Institute, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Medical Science Training Program, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
5
Division of Neonatology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
6
Department of Pediatrics, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine and Howard Hughes Medical Institute, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Division of Neonatology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA. Electronic address: rowitchd@peds.ucsf.edu.

Abstract

Myelin sheaths provide critical functional and trophic support for axons in white matter tracts of the brain. Oligodendrocyte precursor cells (OPCs) have extraordinary metabolic requirements during development as they differentiate to produce multiple myelin segments, implying that they must first secure adequate access to blood supply. However, mechanisms that coordinate myelination and angiogenesis are unclear. Here, we show that oxygen tension, mediated by OPC-encoded hypoxia-inducible factor (HIF) function, is an essential regulator of postnatal myelination. Constitutive HIF1/2α stabilization resulted in OPC maturation arrest through autocrine activation of canonical Wnt7a/7b. Surprisingly, such OPCs also show paracrine activity that induces excessive postnatal white matter angiogenesis in vivo and directly stimulates endothelial cell proliferation in vitro. Conversely, OPC-specific HIF1/2α loss of function leads to insufficient angiogenesis in corpus callosum and catastrophic axon loss. These findings indicate that OPC-intrinsic HIF signaling couples postnatal white matter angiogenesis, axon integrity, and the onset of myelination in mammalian forebrain.

PMID:
25018103
PMCID:
PMC4149873
DOI:
10.1016/j.cell.2014.04.052
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center