Format

Send to

Choose Destination
Mol Biol Evol. 2014 Oct;31(10):2824-7. doi: 10.1093/molbev/msu211. Epub 2014 Jul 10.

selscan: an efficient multithreaded program to perform EHH-based scans for positive selection.

Author information

1
Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco zachary.szpiech@ucsf.edu.
2
Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco Institute for Human Genetics, University of California, San Francisco Institute for Quantitative Biosciences (QB3), University of California, San Francisco.

Abstract

Haplotype-based scans to detect natural selection are useful to identify recent or ongoing positive selection in genomes. As both real and simulated genomic data sets grow larger, spanning thousands of samples and millions of markers, there is a need for a fast and efficient implementation of these scans for general use. Here, we present selscan, an efficient multithreaded application that implements Extended Haplotype Homozygosity (EHH), Integrated Haplotype Score (iHS), and Cross-population EHH (XPEHH). selscan accepts phased genotypes in multiple formats, including TPED, and performs extremely well on both simulated and real data and over an order of magnitude faster than existing available implementations. It calculates iHS on chromosome 22 (22,147 loci) across 204 CEU haplotypes in 353 s on one thread (33 s on 16 threads) and calculates XPEHH for the same data relative to 210 YRI haplotypes in 578 s on one thread (52 s on 16 threads). Source code and binaries (Windows, OSX, and Linux) are available at https://github.com/szpiech/selscan.

PMID:
25015648
PMCID:
PMC4166924
DOI:
10.1093/molbev/msu211
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center