Format

Send to

Choose Destination
Circulation. 2014 Sep 16;130(12):976-86. doi: 10.1161/CIRCULATIONAHA.114.010650. Epub 2014 Jul 11.

Vitamin D promotes vascular regeneration.

Author information

1
From the Institute for Cardiovascular Physiology (M.S.K.W., M.S.L., C.K., J.V., C.S., K.S., R.P.B.), Institute of Biochemistry I (N.D., A.W., B.B.), Institute for Biostatistics and Mathematical Modeling (E.H.), Institute of Pharmaceutical Chemistry/Zentrum für Arzneimittelforschung, Entwicklung und Sicherheit (D.S.), Goethe University, Frankfurt, Germany; German Center for Cardiovascular Research, Partner Site RheinMain, Frankfurt, Germany (M.S.L., C.K., C.S., E.H., S.O., K.S., R.P.B.); Cardiovascular Division, King's College London British Heart Foundation Center of Excellence, London, United Kingdom (A.M.S.); Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.O.); Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium (G.C.); and Department of Endocrinology and Diabetes, Internal Medicine 1, University Hospital Frankfurt, Frankfurt, Germany (K.B.).
2
From the Institute for Cardiovascular Physiology (M.S.K.W., M.S.L., C.K., J.V., C.S., K.S., R.P.B.), Institute of Biochemistry I (N.D., A.W., B.B.), Institute for Biostatistics and Mathematical Modeling (E.H.), Institute of Pharmaceutical Chemistry/Zentrum für Arzneimittelforschung, Entwicklung und Sicherheit (D.S.), Goethe University, Frankfurt, Germany; German Center for Cardiovascular Research, Partner Site RheinMain, Frankfurt, Germany (M.S.L., C.K., C.S., E.H., S.O., K.S., R.P.B.); Cardiovascular Division, King's College London British Heart Foundation Center of Excellence, London, United Kingdom (A.M.S.); Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.O.); Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium (G.C.); and Department of Endocrinology and Diabetes, Internal Medicine 1, University Hospital Frankfurt, Frankfurt, Germany (K.B.). R.Brandes@em.uni-frankfurt.de Schroeder@vrc.uni-frankfurt.de.

Abstract

BACKGROUND:

Vitamin D deficiency in humans is frequent and has been associated with inflammation. The role of the active hormone 1,25-dihydroxycholecalciferol (1,25-dihydroxy-vitamin D3; 1,25-VitD3) in the cardiovascular system is controversial. High doses induce vascular calcification; vitamin D3 deficiency, however, has been linked to cardiovascular disease because the hormone has anti-inflammatory properties. We therefore hypothesized that 1,25-VitD3 promotes regeneration after vascular injury.

METHODS AND RESULTS:

In healthy volunteers, supplementation of vitamin D3 (4000 IU cholecalciferol per day) increased the number of circulating CD45-CD117+Sca1+Flk1+ angiogenic myeloid cells, which are thought to promote vascular regeneration. Similarly, in mice, 1,25-VitD3 (100 ng/kg per day) increased the number of angiogenic myeloid cells and promoted reendothelialization in the carotid artery injury model. In streptozotocin-induced diabetic mice, 1,25-VitD3 also promoted reendothelialization and restored the impaired angiogenesis in the femoral artery ligation model. Angiogenic myeloid cells home through the stromal cell-derived factor 1 (SDF1) receptor CXCR4. Inhibition of CXCR4 blocked 1,25-VitD3-stimulated healing, pointing to a role of SDF1. The combination of injury and 1,25-VitD3 increased SDF1 in vessels. Conditioned medium from injured, 1,25-VitD3-treated arteries elicited a chemotactic effect on angiogenic myeloid cells, which was blocked by SDF1-neutralizing antibodies. Conditional knockout of the vitamin D receptor in myeloid cells but not the endothelium or smooth muscle cells blocked the effects of 1,25-VitD3 on healing and prevented SDF1 formation. Mechanistically, 1,25-VitD3 increased hypoxia-inducible factor 1-α through binding to its promoter. Increased hypoxia-inducible factor signaling subsequently promoted SDF1 expression, as revealed by reporter assays and knockout and inhibitory strategies of hypoxia-inducible factor 1-α.

CONCLUSIONS:

By inducing SDF1, vitamin D3 is a novel approach to promote vascular repair.

KEYWORDS:

angiogenesis; endothelium; reendothelialization; regeneration; vitamin D

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center