Send to

Choose Destination
J Clin Endocrinol Metab. 2014 Oct;99(10):3903-11. doi: 10.1210/jc.2014-2151. Epub 2014 Jul 11.

Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency.

Author information

Institute of Clinical Chemistry and Laboratory Medicine (S.R., M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; Department of Experimental and Clinical Biomedical Sciences "Mario Serio" (E.R., M.M.), University of Florence and Istituto Toscano Tumori, Viale Pieraccini 6, 50139 Florence, Italy; Department of Medicine (J.W.L., J.U.R., H.J.T.), Radboud University Nijmegen Medical Centre, Geert Grooteplein Zuid 8, 6525GA, Nijmegen, The Netherlands; Department of Medicine III (J.W.L., G.E.), University Hospital Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; Hereditary Endocrine Cancer Group (A.A.C., M.R.), CNIO, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.A.C., M.R.), C/Melchor Fernández Almagro 3, 28029 Madrid, Spain; Veneto Institute of Oncology IRCCS (F.S., G.O.), Via Gattamelata 64, 35128 Padova, Italy; Medizinische Klinik and Poliklinik IV (F.B.), Ludwig-Maximilians-Universität München, Ziemssenstrasse 1, D-80336 Munich, Germany; Clinical Endocrinology (M.Q.), Campus Mitte, University Hospital Charité, Charitéplatz 1, 10117, Berlin, Germany; Eunice Kennedy Shriver National Institute of Child Health and Human Development (K.P.), National Institutes of Health, 10 Center Drive, MSC-1109, Bethesda, Maryland 20892-1109.



Mutations of succinate dehydrogenase A/B/C/D genes (SDHx) increase susceptibility to development of pheochromocytomas and paragangliomas (PPGLs), with particularly high rates of malignancy associated with SDHB mutations.


We assessed whether altered succinate dehydrogenase product-precursor relationships, manifested by differences in tumor ratios of succinate to fumarate or other metabolites, might aid in identifying and stratifying patients with SDHx mutations.


PPGL tumor specimens from 233 patients, including 45 with SDHx mutations, were provided from eight tertiary referral centers for mass spectrometric analyses of Krebs cycle metabolites.


Diagnostic performance of the succinate:fumarate ratio for identification of pathogenic SDHx mutations.


SDH-deficient PPGLs were characterized by 25-fold higher succinate and 80% lower fumarate, cis-aconitate, and isocitrate tissue levels than PPGLs without SDHx mutations. Receiver-operating characteristic curves for use of ratios of succinate to fumarate or to cis-aconitate and isocitrate to identify SDHx mutations indicated areas under curves of 0.94 to 0.96; an optimal cut-off of 97.7 for the succinate:fumarate ratio provided a diagnostic sensitivity of 93% at a specificity of 97% to identify SDHX-mutated PPGLs. Succinate:fumarate ratios were higher in both SDHB-mutated and metastatic tumors than in those due to SDHD/C mutations or without metastases.


Mass spectrometric-based measurements of ratios of succinate:fumarate and other metabolites in PPGLs offer a useful method to identify patients for testing of SDHx mutations, with additional utility to quantitatively assess functionality of mutations and metabolic factors responsible for malignant risk.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center