Format

Send to

Choose Destination
Nature. 2014 Jul 10;511(7508):177-83. doi: 10.1038/nature13551. Epub 2014 Jul 2.

Abnormalities in human pluripotent cells due to reprogramming mechanisms.

Author information

1
1] Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 Southwest Bond Avenue, Portland, Oregon 97239, USA [2] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA [3].
2
1] Department of Reproductive Medicine, University of California, San Diego, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, California 92037, USA [2].
3
1] Genomic Analysis Laboratory, the Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Bioinformatics Program, University of California at San Diego, La Jolla, California 92093, USA.
4
1] Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 Southwest Bond Avenue, Portland, Oregon 97239, USA [2] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA.
5
Genomic Analysis Laboratory, the Salk Institute for Biological Studies, La Jolla, California 92037, USA.
6
Department of Reproductive Medicine, University of California, San Diego, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, California 92037, USA.
7
1] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA [2] Department of Obstetrics and Gynecology, South Miyagi Medical Center, Shibata-gun, Miyagi 989-1253, Japan (M.T.); Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden (A.P.).
8
Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA.
9
University Pathologists LLC, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island 02118, USA.
10
Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, USA.
11
1] Genomic Analysis Laboratory, the Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Howard Hughes Medical Institute, the Salk Institute for Biological Studies, La Jolla, California 92037, USA.
12
1] Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 Southwest Bond Avenue, Portland, Oregon 97239, USA [2] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA [3] Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, USA.

Abstract

Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. Although embryonic stem cells (ES cells) from in vitro fertilized embryos (IVF ES cells) represent the 'gold standard', they are allogeneic to patients. Autologous induced pluripotent stem cells (iPS cells) are prone to epigenetic and transcriptional aberrations. To determine whether such abnormalities are intrinsic to somatic cell reprogramming or secondary to the reprogramming method, genetically matched sets of human IVF ES cells, iPS cells and nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT) were subjected to genome-wide analyses. Both NT ES cells and iPS cells derived from the same somatic cells contained comparable numbers of de novo copy number variations. In contrast, DNA methylation and transcriptome profiles of NT ES cells corresponded closely to those of IVF ES cells, whereas iPS cells differed and retained residual DNA methylation patterns typical of parental somatic cells. Thus, human somatic cells can be faithfully reprogrammed to pluripotency by SCNT and are therefore ideal for cell replacement therapies.

PMID:
25008523
PMCID:
PMC4898064
DOI:
10.1038/nature13551
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center