Format

Send to

Choose Destination
Brain Struct Funct. 2015 Sep;220(5):2797-815. doi: 10.1007/s00429-014-0827-4. Epub 2014 Jul 8.

Glutamate receptors of the delta family are widely expressed in the adult brain.

Author information

1
Sorbonne Universit├ęs, UPMC Univ Paris 06, UM CR 18, Neuroscience Paris Seine, 75005, Paris, France.

Abstract

Recent reports point to critical roles of glutamate receptor subunit delta2 (GluD2) at excitatory synapses and link GluD1 gene alteration to schizophrenia but the expression patterns of these subunits in the brain remain almost uncharacterized. We examined the distribution of GluD1-2 mRNAs and proteins in the adult rodent brain, focusing mainly on GluD1. In situ hybridization revealed widespread neuronal expression of the GluD1 mRNA, with higher levels occurring in several forebrain regions and lower levels in cerebellum. Quantitative RT-PCR assessed differential GluD1 expression in cortex and cerebellum, and revealed GluD2 expression in cortex, albeit at markedly lower level than in cerebellum. Likewise, a high GluD1/GluD2 mRNA ratio was observed in cortex and a low ratio in cerebellum. GluD1 and GluD2 mRNAs were co-expressed in single cortical and hippocampal neurons, with a large predominance of GluD1. Western blots using GluD1- and GluD2-specific antibodies showed expression of both subunits in various brain structures, but not in non-nervous tissues examined. Both delta subunits were upregulated during postnatal development. Widespread neuronal expression of the GluD1 protein was confirmed using immunohistochemistry. Examination at the electron microscopic level in the hippocampus revealed that GluD1 was mainly localized at postsynaptic density of excitatory synapses on pyramidal cells. Control experiments performed using mice carrying deletion of the GluD1- or the GluD2-encoding gene confirmed the specificity of the present mRNA and protein analyses. Our results support a role for the delta family of glutamate receptors at excitatory synapses in neuronal networks throughout the adult brain.

PMID:
25001082
DOI:
10.1007/s00429-014-0827-4
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center