Format

Send to

Choose Destination
J Gen Physiol. 2014 Jul;144(1):115-24. doi: 10.1085/jgp.201411179.

Calcium-calmodulin does not alter the anion permeability of the mouse TMEM16A calcium-activated chloride channel.

Author information

1
Center for Neuroscience and Department of Neurology, University of California, Davis, Davis, CA 95618.
2
Center for Neuroscience and Department of Neurology, University of California, Davis, Davis, CA 95618 tycchen@ucdavis.edu.

Abstract

The transmembrane protein TMEM16A forms a Ca(2+)-activated Cl(-) channel that is permeable to many anions, including SCN(-), I(-), Br(-), Cl(-), and HCO3 (-), and has been implicated in various physiological functions. Indeed, controlling anion permeation through the TMEM16A channel pore may be critical in regulating the pH of exocrine fluids such as the pancreatic juice. The anion permeability of the TMEM16A channel pore has recently been reported to be modulated by Ca(2+)-calmodulin (CaCaM), such that the pore of the CaCaM-bound channel shows a reduced ability to discriminate between anions as measured by a shift of the reversal potential under bi-ionic conditions. Here, using a mouse TMEM16A clone that contains the two previously identified putative CaM-binding motifs, we were unable to demonstrate such CaCaM-dependent changes in the bi-ionic potential. We confirmed the activity of CaCaM used in our study by showing CaCaM modulation of the olfactory cyclic nucleotide-gated channel. We suspect that the different bi-ionic potentials that were obtained previously from whole-cell recordings in low and high intracellular [Ca(2+)] may result from different degrees of bi-ionic potential shift secondary to a series resistance problem, an ion accumulation effect, or both.

PMID:
24981232
PMCID:
PMC4076522
DOI:
10.1085/jgp.201411179
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center