Format

Send to

Choose Destination
Pediatr Res. 1989 May;25(5):503-8.

A new model for predicting energy requirements of children during catch-up growth developed using doubly labeled water.

Author information

1
Instituto de Investigación Nutriciońal, Lima, Perú.

Abstract

Energy partitioned to maintenance plus activity, tissue synthesis, and storage was measured in 41 children in early recovery [W/L (wt/length) less than 5th percentile] from severe protein-energy malnutrition and in late recovery (W/L = 25th percentile) to determine energy requirements during catch-up growth. Metabolizable energy intake was measured by bomb calorimetry and metabolic collections. Energy expended (means +/- SD) for maintenance and activity estimated by the doubly labeled water method was 97 +/- 12 kcal/kg FFM (fat-free mass) in early recovery and 98 +/- 12 kcal/kg FFM in late recovery (p greater than 0.5). Energy stored was 5-6 kcal/g of wt gain. Tissue synthesis increased energy expenditure by 1 +/- 0.7 kcal/g gain in both early and late recovery. From these data a mathematical model was developed to predict energy requirements for children during catch-up growth as a function of initial body composition and rate and composition of wt gain. The model for predicting metabolizable energy requirements is [(98 x FFM + A (11.1 B + 2.2 C)], kcal/kg.d, where FFM is fat-free mass expressed as a percentage of body wt, A is wt gain (g/kg.d), B and C are percentage of wt gain/100 as fat and FFM, respectively. The model was tested retrospectively in separate studies of malnourished children.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center