Format

Send to

Choose Destination
Front Genet. 2014 Jun 11;5:175. doi: 10.3389/fgene.2014.00175. eCollection 2014.

Is homologous recombination really an error-free process?

Author information

1
CNRS, UMR 8200, Institut de Cancérologie Gustave Roussy, Équipe Labélisée, Université Paris-Sud, «LIGUE 2014» Villejuif, France.
2
Institut Curie, CNRS, UMR 3348 Orsay, France.
3
CEA DSV, UMR 967 CEA-INSERM-Université Paris Diderot-Université Paris Sud, Institut de Radiobiologie Cellulaire et Moléculaire Fontenay-aux-Roses, France.

Abstract

Homologous recombination (HR) is an evolutionarily conserved process that plays a pivotal role in the equilibrium between genetic stability and diversity. HR is commonly considered to be error-free, but several studies have shown that HR can be error-prone. Here, we discuss the actual accuracy of HR. First, we present the product of genetic exchanges (gene conversion, GC, and crossing over, CO) and the mechanisms of HR during double strand break repair and replication restart. We discuss the intrinsic capacities of HR to generate genome rearrangements by GC or CO, either during DSB repair or replication restart. During this process, abortive HR intermediates generate genetic instability and cell toxicity. In addition to genome rearrangements, HR also primes error-prone DNA synthesis and favors mutagenesis on single stranded DNA, a key DNA intermediate during the HR process. The fact that cells have developed several mechanisms protecting against HR excess emphasize its potential risks. Consistent with this duality, several pro-oncogenic situations have been consistently associated with either decreased or increased HR levels. Nevertheless, this versatility also has advantages that we outline here. We conclude that HR is a double-edged sword, which on one hand controls the equilibrium between genome stability and diversity but, on the other hand, can jeopardize the maintenance of genomic integrity. Therefore, whether non-homologous end joining (which, in contrast with HR, is not intrinsically mutagenic) or HR is the more mutagenic process is a question that should be re-evaluated. Both processes can be "Dr. Jekyll" in maintaining genome stability/variability and "Mr. Hyde" in jeopardizing genome integrity.

KEYWORDS:

DNA double strand break repair; Homologous recombination; genetic instability; genetic variability; mutagenesis; replication stress

Supplemental Content

Full text links

Icon for Frontiers Media SA Icon for PubMed Central
Loading ...
Support Center