Format

Send to

Choose Destination
Front Microbiol. 2014 Jun 11;5:294. doi: 10.3389/fmicb.2014.00294. eCollection 2014.

Comparative genomics and evolution of regulons of the LacI-family transcription factors.

Author information

1
Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia.
2
Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia ; Faculty of Bioengineering and Bioinformatics, Moscow State University Moscow, Russia.
3
Faculty of Bioengineering and Bioinformatics, Moscow State University Moscow, Russia.
4
Lawrence Berkeley National Laboratory, Genomics Division Berkeley, CA, USA.
5
Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia ; Department of Bioinformatics, Sanford-Burnham Medical Research Institute La Jolla, CA, USA.

Abstract

DNA-binding transcription factors (TFs) are essential components of transcriptional regulatory networks in bacteria. LacI-family TFs (LacI-TFs) are broadly distributed among certain lineages of bacteria. The majority of characterized LacI-TFs sense sugar effectors and regulate carbohydrate utilization genes. The comparative genomics approaches enable in silico identification of TF-binding sites and regulon reconstruction. To study the function and evolution of LacI-TFs, we performed genomics-based reconstruction and comparative analysis of their regulons. For over 1300 LacI-TFs from over 270 bacterial genomes, we predicted their cognate DNA-binding motifs and identified target genes. Using the genome context and metabolic subsystem analyses of reconstructed regulons, we tentatively assigned functional roles and predicted candidate effectors for 78 and 67% of the analyzed LacI-TFs, respectively. Nearly 90% of the studied LacI-TFs are local regulators of sugar utilization pathways, whereas the remaining 125 global regulators control large and diverse sets of metabolic genes. The global LacI-TFs include the previously known regulators CcpA in Firmicutes, FruR in Enterobacteria, and PurR in Gammaproteobacteria, as well as the three novel regulators-GluR, GapR, and PckR-that are predicted to control the central carbohydrate metabolism in three lineages of Alphaproteobacteria. Phylogenetic analysis of regulators combined with the reconstructed regulons provides a model of evolutionary diversification of the LacI protein family. The obtained genomic collection of in silico reconstructed LacI-TF regulons in bacteria is available in the RegPrecise database (http://regprecise.lbl.gov). It provides a framework for future structural and functional classification of the LacI protein family and identification of molecular determinants of the DNA and ligand specificity. The inferred regulons can be also used for functional gene annotation and reconstruction of sugar catabolic networks in diverse bacterial lineages.

KEYWORDS:

bacteria; comparative genomics; regulons; sugar metabolism; transcription factors

Supplemental Content

Full text links

Icon for Frontiers Media SA Icon for PubMed Central
Loading ...
Support Center