Format

Send to

Choose Destination
Neuron. 2014 Jul 2;83(1):216-25. doi: 10.1016/j.neuron.2014.05.005. Epub 2014 Jun 12.

Increases in functional connectivity between prefrontal cortex and striatum during category learning.

Author information

1
The Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Neuroscience, Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95618, USA. Electronic address: eantzoulatos@ucdavis.edu.
2
The Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Electronic address: ekmiller@mit.edu.

Abstract

Functional connectivity between the prefrontal cortex (PFC) and striatum (STR) is thought critical for cognition and has been linked to conditions like autism and schizophrenia. We recorded from multiple electrodes in PFC and STR while monkeys acquired new categories. Category learning was accompanied by an increase in beta band synchronization of LFPs between, but not within, the PFC and STR. After learning, different pairs of PFC-STR electrodes showed stronger synchrony for one or the other category, suggesting category-specific functional circuits. This category-specific synchrony was also seen between PFC spikes and STR LFPs, but not the reverse, reflecting the direct monosynaptic connections from the PFC to STR. However, causal connectivity analyses suggested that the polysynaptic connections from STR to the PFC exerted a stronger overall influence. This supports models positing that the basal ganglia "train" the PFC. Category learning may depend on the formation of functional circuits between the PFC and STR.

PMID:
24930701
PMCID:
PMC4098789
DOI:
10.1016/j.neuron.2014.05.005
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center