Format

Send to

Choose Destination
Eur J Biochem. 1989 Jan 15;179(1):11-6.

Structural and physicochemical requirements of endotoxins for the activation of arachidonic acid metabolism in mouse peritoneal macrophages in vitro.

Author information

1
Forschungsinstitut Borstel, Institut für Experimentelle Biologie und Medizin, Borstel, Federal Republic of Germany.

Abstract

Lipopolysaccharides of different wild-type and mutant gram-negative bacteria, as well as synthetic and bacterial free lipid A, were studied for their ability to activate arachidonic acid metabolism in mouse peritoneal macrophages in vitro. It was found that lipopolysaccharides of deep-rough mutants of Salmonella minnesota and Escherichia coli (Re to Rc chemotypes) stimulated macrophages to release significant amounts of leukotriene C4 (LTC4) and prostaglandin E2 (PGE2). Lipopolysaccharides of wild-type strains (S. abortus equi, S. friedenau) only induced PGE2 and not LTC4 formation. Unexpectedly, free bacterial and synthetic E. coli lipid A were only weak inducers of LTC4 and PGE2 production. Deacylated Re-mutant lipopolysaccharide preparations were inactive. However, co-incubation of macrophages with both deacylated lipopolysaccharide and lipid A lead to the release of significant amounts of LTC4 and PGE2, similar to those obtained with Re-mutant lipopolysaccharide. The significance of the lipid A portion of lipopolysaccharide for the induction of LTC4 was indicated by demonstrating that peritoneal macrophages of endotoxin-low-responder mice or of mice rendered tolerant to endotoxin did not respond with the release of arachidonic acid metabolites on stimulation with Re-mutant lipopolysaccharide and that polymyxin B prevented the Re-lipopolysaccharide-induced LTC4 and PGE2 release. Physical measurements showed that the phase-transition temperatures of both free lipid A and S-form lipopolysaccharide were above 37 degrees C while those of R-mutant lipopolysaccharides were significantly lower (30-35 degrees C). Thus, with the materials investigated, an inverse relationship between the phase-transition temperature and the capacity to elicit LTC4 production was revealed.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center