Format

Send to

Choose Destination
Radiology. 2014 Nov;273(2):560-9. doi: 10.1148/radiol.14131717. Epub 2014 Jun 11.

Black-blood multicontrast imaging of carotid arteries with DANTE-prepared 2D and 3D MR imaging.

Author information

1
From the Functional Magnetic Resonance Imaging of the Brain Centre, Nuffield Department of Clinical Neurosciences (L.L., J.N., P.J.), Acute Vascular Imaging Centre, Radcliffe Department of Medicine (J.T.C., R.P.C.), University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine (L.B., M.D.R.), and Nuffield Department of Surgical Sciences (A.I.H.), University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, England.

Abstract

PURPOSE:

To prospectively compare the black-blood ( BB black blood ) imaging efficiency of a delay alternating with nutation for tailored excitation ( DANTE delay alternating with nutation for tailored excitation ) preparation module with conventional double inversion-recovery ( DIR double inversion recovery ) and motion-sensitive driven equilibrium ( MSDE motion-sensitive driven equilibrium ) preparation modules and to introduce a new three-dimensional ( 3D three-dimensional ) T1-weighted magnetic resonance (MR) imaging sequence.

MATERIALS AND METHODS:

Carotid artery wall imaging was performed in 10 healthy volunteers and 15 patients in accordance with an institutional review board-approved protocol. Two-dimensional ( 2D two-dimensional ) turbo spin-echo ( TSE turbo spin echo ) and 3D three-dimensional fast low-angle shot ( FLASH fast low-angle shot ) sequences served as readout modules. DANTE delay alternating with nutation for tailored excitation -prepared T1-, T2-, and proton density-weighted 2D two-dimensional TSE turbo spin echo images, as well as T1-weighted 3D three-dimensional DANTE delay alternating with nutation for tailored excitation -prepared FLASH fast low-angle shot (hereafter, 3D three-dimensional DASH DANTE-prepared FLASH ) images, were acquired in the region of the carotid artery bifurcation. For comparison, 2D two-dimensional DIR double inversion recovery -prepared, 2D two-dimensional MSDE motion-sensitive driven equilibrium -prepared multicontrast TSE turbo spin echo , and 3D three-dimensional MSDE motion-sensitive driven equilibrium -prepared FLASH fast low-angle shot (hereafter, 3D three-dimensional MERGE MSDE-prepared FLASH ) MR images were also acquired. The effective contrast-to-noise ratio ( CNReff effective contrast-to-noise ratio ) per unit time was calculated for all sequences. Paired t tests were performed to test within-group differences in vessel wall CNReff effective contrast-to-noise ratio .

RESULTS:

The CNReff effective contrast-to-noise ratio of DANTE delay alternating with nutation for tailored excitation -prepared T1-, T2-, and proton density-weighted sequences was 27.3, 14.7, and 25.7 mm(-1)min(-1/2), respectively; this represented an improvement of approximately 25%-100% (P < .05) when compared with the CNReff effective contrast-to-noise ratio attained with existing methods. The 3D three-dimensional DASH DANTE-prepared FLASH technique proved to be a fast (<2 seconds per section) and high-spatial-resolution (0.6 mm isotropic) BB black blood technique with higher (75%-100% improvement, P < .001) signal-to-noise ratio efficiency than the 3D three-dimensional MERGE MSDE-prepared FLASH technique.

CONCLUSION:

The DANTE delay alternating with nutation for tailored excitation -prepared multicontrast 2D two-dimensional BB black blood technique is a promising new tool for MR imaging of carotid artery walls. Additionally, the 3D three-dimensional DASH DANTE-prepared FLASH sequence enables 3D three-dimensional high-spatial-resolution fast T1-weighted imaging of carotid artery walls. ©RSNA, 2014 Online supplemental material is available for this article .

PMID:
24918958
DOI:
10.1148/radiol.14131717
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center