Format

Send to

Choose Destination
Hum Mol Genet. 2014 Nov 1;23(21):5649-58. doi: 10.1093/hmg/ddu281. Epub 2014 Jun 10.

Genetic dissection reveals that Akt is the critical kinase downstream of LRRK2 to phosphorylate and inhibit FOXO1, and promotes neuron survival.

Author information

1
Institute of Systems Neuroscience, Department of Medical Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan and Brain Research Center, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
2
Institute of Systems Neuroscience, Department of Medical Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan and Brain Research Center, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan huiyun@life.nthu.edu.tw.

Abstract

Leucine-rich repeat kinase 2 (LRRK2) is a complex kinase and mutations in LRRK2 are perhaps the most common genetic cause of Parkinson's disease (PD). However, the identification of the normal physiological function of LRRK2 remains elusive. Here, we show that LRRK2 protects neurons against apoptosis induced by the Drosophila genes grim, hid and reaper. Genetic dissection reveals that Akt is the critical downstream kinase of LRRK2 that phosphorylates and inhibits FOXO1, and thereby promotes survival. Like human LRRK2, Drosophila lrrk also promotes neuron survival; lrrk loss-of-function mutant displays reduced cell numbers, which can be rescued by LRRK2 expression. Importantly, LRRK2 G2019S and LRRK2 R1441C mutants impair the ability of LRRK2 to activate Akt, and fail to prevent apoptotic death. Ectopic expression of a constitutive active form of Akt hence is sufficient to rescue this functional deficit. These data establish that LRRK2 can protect neurons from apoptotic insult through a survival pathway in which LRRK2 signals to activate Akt, and then inhibits FOXO1. These results might indicate that a LRRK-Akt therapeutic pathway to promote neuron survival and to prevent neurodegeneration in Parkinson's disease.

PMID:
24916379
DOI:
10.1093/hmg/ddu281
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center