Send to

Choose Destination
PLoS One. 2014 Jun 10;9(6):e98362. doi: 10.1371/journal.pone.0098362. eCollection 2014.

In cellulo evaluation of phototransformation quantum yields in fluorescent proteins used as markers for single-molecule localization microscopy.

Author information

Université Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble, France; CNRS, IBS, Grenoble, France; CEA, DSV, IBS, Grenoble, France.
Department of Physics and Astronomy, University of Maine, Orono, Maine, United States of America.


Single-molecule localization microscopy of biological samples requires a precise knowledge of the employed fluorescent labels. Photoactivation, photoblinking and photobleaching of phototransformable fluorescent proteins influence the data acquisition and data processing strategies to be used in (Fluorescence) Photoactivation Localization Microscopy ((F)-PALM), notably for reliable molecular counting. As these parameters might depend on the local environment, they should be measured in cellulo in biologically relevant experimental conditions. Here, we measured phototransformation quantum yields for Dendra2 fused to actin in fixed mammalian cells in typical (F)-PALM experiments. To this aim, we developed a data processing strategy based on the clustering optimization procedure proposed by Lee et al (PNAS 109, 17436-17441, 2012). Using simulations, we estimated the range of experimental parameters (molecular density, molecular orientation, background level, laser power, frametime) adequate for an accurate determination of the phototransformation yields. Under illumination at 561 nm in PBS buffer at pH 7.4, the photobleaching yield of Dendra2 fused to actin was measured to be (2.5 ± 0.4) × 10(-5), whereas the blinking-off yield and thermally-activated blinking-on rate were measured to be (2.3 ± 0.2) × 10(-5) and 11.7 ± 0.5 s-1, respectively. These phototransformation yields differed from those measured in poly-vinyl alcohol (PVA) and were strongly affected by addition of the antifading agent 1,4-diazabicyclo[2.2.2]octane (DABCO). In the presence of DABCO, the photobleaching yield was reduced 2-fold, the blinking-off yield was decreased more than 3-fold, and the blinking-on rate was increased 2-fold. Therefore, DABCO largely improved Dendra2 photostability in fixed mammalian cells. These findings are consistent with redox-based bleaching and blinking mechanisms under (F)-PALM experimental conditions. Finally, the green-to-red photoconversion quantum yield of Dendra2 was estimated to be (1.4 ± 0.6) × 10(-5) in cellulo under 405 nm illumination.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center