Format

Send to

Choose Destination
Mamm Genome. 2014 Aug;25(7-8):271-92. doi: 10.1007/s00335-014-9523-1. Epub 2014 Jun 7.

Fine-mapping QTLs in advanced intercross lines and other outbred populations.

Author information

1
Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.

Abstract

Quantitative genetic studies in model organisms, particularly in mice, have been extremely successful in identifying chromosomal regions that are associated with a wide variety of behavioral and other traits. However, it is now widely understood that identification of the underlying genes will be far more challenging. In the last few years, a variety of populations have been utilized in an effort to more finely map these chromosomal regions with the goal of identifying specific genes. The common property of these newer populations is that linkage disequilibrium spans relatively short distances, which permits fine-scale mapping resolution. This review focuses on advanced intercross lines (AILs) which are the simplest such population. As originally proposed in 1995 by Darvasi and Soller, an AIL is the product of intercrossing two inbred strains beyond the F2 generation. Unlike recombinant inbred strains, AILs are maintained as outbred populations; brother-sister matings are specifically avoided. Each generation of intercrossing beyond the F2 further degrades linkage disequilibrium between adjacent makers, which allows for fine-scale mapping of quantitative trait loci (QTLs). Advances in genotyping technology and techniques for the statistical analysis of AILs have permitted rapid advances in the application of AILs. We review some of the analytical issues and available software, including QTLRel, EMMA, EMMAX, GEMMA, TASSEL, GRAMMAR, WOMBAT, Mendel, and others.

PMID:
24906874
PMCID:
PMC4126234
DOI:
10.1007/s00335-014-9523-1
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center