Format

Send to

Choose Destination
See comment in PubMed Commons below
Adv Mater. 2014 Aug 13;26(30):5079-94. doi: 10.1002/adma.201401389. Epub 2014 Jun 5.

Charge transport in polycrystalline graphene: challenges and opportunities.

Author information

1
ICN2 - Institut Català de Nanociència i Nanotecnologia, Campus UAB, 08193, Bellaterra, Barcelona, Spain.

Abstract

Graphene has attracted significant interest both for exploring fundamental science and for a wide range of technological applications. Chemical vapor deposition (CVD) is currently the only working approach to grow graphene at wafer scale, which is required for industrial applications. Unfortunately, CVD graphene is intrinsically polycrystalline, with pristine graphene grains stitched together by disordered grain boundaries, which can be either a blessing or a curse. On the one hand, grain boundaries are expected to degrade the electrical and mechanical properties of polycrystalline graphene, rendering the material undesirable for many applications. On the other hand, they exhibit an increased chemical reactivity, suggesting their potential application to sensing or as templates for synthesis of one-dimensional materials. Therefore, it is important to gain a deeper understanding of the structure and properties of graphene grain boundaries. Here, we review experimental progress on identification and electrical and chemical characterization of graphene grain boundaries. We use numerical simulations and transport measurements to demonstrate that electrical properties and chemical modification of graphene grain boundaries are strongly correlated. This not only provides guidelines for the improvement of graphene devices, but also opens a new research area of engineering graphene grain boundaries for highly sensitive electro-biochemical devices.

KEYWORDS:

charge transport; functionalization; grain boundaries; graphene; scaling law

PMID:
24903153
DOI:
10.1002/adma.201401389
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center