Format

Send to

Choose Destination
Apoptosis. 2014 Aug;19(8):1254-68. doi: 10.1007/s10495-014-1001-4.

AGGF1 protects from myocardial ischemia/reperfusion injury by regulating myocardial apoptosis and angiogenesis.

Author information

1
Department of Pathology, Physiology and Pathophysiology, Beijing AnZhen Hospital the Key Laboratory of Remodeling-Related Cardiovascular Diseases, School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.

Abstract

Angiogenic factor with G patch and FHA domains 1 (AGGF1) is a newly identified proangiogenic protein, which plays an important role in vascular disease and angiogenesis. However, its role in myocardial ischemia/reperfusion (I/R) injury remains unknown. This study investigated whether AGGF1 is involved in the pathogenesis of mouse myocardial I/R injury and the underlying mechanisms. Wild-type (WT) C57BL/6 J mice were treated at 30 min prior to I/R injury with anti-AGGF1 neutralizing antibody (3 mg/kg) or recombinant human AGGF1 (rhAGGF1, 0.25 mg/kg). After I/R injury, the infarct size, the number of TUNEL-positive cardiomyocytes, Bax/Bcl2 ratio, inflammatory cytokine expression and angiogenesis were markedly increased as compared with sham control. Treatment of WT mice with anti-AGGF1 neutralizing antibody resulted in exaggeration of myocardial I/R injury but reducing angiogenesis. In contrast, administration of rhAGGF1 markedly reversed these effects. Furthermore, anti-AGGF1- or rhAGGF1-mediated effects on I/R-induced cardiac apoptosis, inflammation and angiogenesis were dose dependent. In addition, the protective effects of AGGF1 on cardiomyocyte apoptosis and inflammation were confirmed in cultured cardiomyocytes after I/R. Finally, these effects were associated with activation of ERK1/2, Stat3 and HIF-1α/VEGF pathways and inhibition of activation of NF-κB, p53 and JNK1/2 pathways. In conclusion, we report the first in vivo and in vitro evidence that AGGF1 reduces myocardial apoptosis and inflammation and enhances angiogenesis, leading to decreased infarct size after I/R injury. These results may provide a novel therapeutic approach for ischemic heart diseases.

PMID:
24893993
DOI:
10.1007/s10495-014-1001-4
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center