Format

Send to

Choose Destination
See comment in PubMed Commons below
Biotechnol Bioeng. 2014 Nov;111(11):2220-8. doi: 10.1002/bit.25278. Epub 2014 Jul 18.

Construction of a yeast-based signaling biosensor for human angiotensin II type 1 receptor via functional coupling between Asn295-mutated receptor and Gpa1/Gi3 chimeric Gα.

Author information

1
Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.

Abstract

Angiotensin II (Ang II) type 1 receptor (AGTR1) is a G-protein-coupled receptor (GPCR). Its natural ligand, Ang II, is an important effector molecule controlling blood pressure and volume in the cardiovascular system, and is consequently involved in various diseases such as hypertension and heart failure. Thus, the signaling mediator, AGTR1, is a significant molecular target in medicinal and therapeutic fields. Yeast is a useful organism for sensing GPCR signaling because it provides a simplified version of the complicated machinery used by mammalian cells for signal transduction. Although yeast cells can successfully transmit a signal through a variety of human GPCRs expressed in the cell membrane, there have been no reports of the functional activation of AGTR1-mediated signaling in yeast cells. In the present study, we introduced a single mutation into human AGTR1 and used yeast-human chimeric Gα to exert the functional activation of AGTR1 in yeast cells. The engineered yeast cells expressing AGTR1 mutated at Asn295 and the chimeric Gα successfully transmitted the signal inside the yeast cells in response to Ang II peptide and its analogs (Ang III and Ang IV peptides) added to the assay medium. Further, we demonstrated that the autocrine Ang II peptide and its analog, produced and secreted by the engineered yeast cells, could by themselves promote AGTR1-mediated signaling. This means that screening for agonistic peptides with various sequences from a self-produced genetic library would be a viable strategy. Thus, the constructed yeast biosensor, integrating an Asn295-mutated AGTR1 receptor, will be valuable in the design of drugs to treat AGTR1-related diseases.

KEYWORDS:

G-protein signaling; G-protein-coupled receptor; Saccharomyces cerevisiae; angiotensin II type 1 receptor; green fluorescent protein; peptide screening

PMID:
24890663
DOI:
10.1002/bit.25278
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center