Format

Send to

Choose Destination
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.

All-atom empirical potential for molecular modeling and dynamics studies of proteins.

Author information

1
Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, Maryland 21201, and Laboratoire de Chimie Biophysique, ISIS, Institut Le Bel, Université Louis Pasteur, 67000 Strasbourg, France.

Abstract

New protein parameters are reported for the all-atom empirical energy function in the CHARMM program. The parameter evaluation was based on a self-consistent approach designed to achieve a balance between the internal (bonding) and interaction (nonbonding) terms of the force field and among the solvent-solvent, solvent-solute, and solute-solute interactions. Optimization of the internal parameters used experimental gas-phase geometries, vibrational spectra, and torsional energy surfaces supplemented with ab initio results. The peptide backbone bonding parameters were optimized with respect to data for N-methylacetamide and the alanine dipeptide. The interaction parameters, particularly the atomic charges, were determined by fitting ab initio interaction energies and geometries of complexes between water and model compounds that represented the backbone and the various side chains. In addition, dipole moments, experimental heats and free energies of vaporization, solvation and sublimation, molecular volumes, and crystal pressures and structures were used in the optimization. The resulting protein parameters were tested by applying them to noncyclic tripeptide crystals, cyclic peptide crystals, and the proteins crambin, bovine pancreatic trypsin inhibitor, and carbonmonoxy myoglobin in vacuo and in crystals. A detailed analysis of the relationship between the alanine dipeptide potential energy surface and calculated protein φ, χ angles was made and used in optimizing the peptide group torsional parameters. The results demonstrate that use of ab initio structural and energetic data by themselves are not sufficient to obtain an adequate backbone representation for peptides and proteins in solution and in crystals. Extensive comparisons between molecular dynamics simulations and experimental data for polypeptides and proteins were performed for both structural and dynamic properties. Energy minimization and dynamics simulations for crystals demonstrate that the latter are needed to obtain meaningful comparisons with experimental crystal structures. The presented parameters, in combination with the previously published CHARMM all-atom parameters for nucleic acids and lipids, provide a consistent set for condensed-phase simulations of a wide variety of molecules of biological interest.

PMID:
24889800
DOI:
10.1021/jp973084f

Supplemental Content

Loading ...
Support Center