Format

Send to

Choose Destination

Liquid chromatography-high resolution/ high accuracy (tandem) mass spectrometry-based identification of in vivo generated metabolites of the selective androgen receptor modulator ACP-105 for doping control purposes.

Abstract

Selective androgen receptor modulators (SARMs) represent an emerging class of therapeutics which have been prohibited in sport as anabolic agents according to the regulations of the World Anti-Doping Agency (WADA) since 2008. Within the past three years, numerous adverse analytical findings with SARMs in routine doping control samples have been reported despite missing clinical approval of these substances. Hence, preventive doping research concerning the metabolism and elimination of new therapeutic entities of the class of SARMs are vital for efficient and timely sports drug testing programs as banned compounds are most efficiently screened when viable targets (for example, characteristic metabolites) are identified. In the present study, the metabolism of ACP-105, a novel SARM drug candidate, was studied in vivo in rats. Following oral administration, urine samples were collected over a period of seven days and analyzed for metabolic products by Liquid chromatography-high resolution/high accuracy (tandem) mass spectrometry. Samples were subjected to enzymatic hydrolysis prior to liquid-liquid extraction and a total of seven major phase-I metabolites were detected, three of which were attributed to monohydroxylated and four to bishydroxylated ACP-105. The hydroxylation sites were assigned by means of diagnostic product ions and respective dissociation pathways of the analytes following positive or negative ionization and collisional activation as well as selective chemical derivatization. The identified metabolites were used as target compounds to investigate their traceability in a rat elimination urine samples study and monohydroxylated and bishydroxylated species were detectable for up to four and six days post-administration, respectively.

PMID:
24881457
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center