Format

Send to

Choose Destination
Neuroimage. 2014 Oct 1;99:548-58. doi: 10.1016/j.neuroimage.2014.05.055. Epub 2014 May 23.

Simultaneous recording of MEG, EEG and intracerebral EEG during visual stimulation: from feasibility to single-trial analysis.

Author information

1
Aix-Marseille Université, Faculté de Médecine La Timone, 13005 Marseille, France; Aix-Marseille Université, CNRS, LPC UMR 7290, 13331 Marseille, France; INSERM, UMR 1106, Institut de Neurosciences des Systèmes, 13005 Marseille, France.
2
Aix-Marseille Université, Faculté de Médecine La Timone, 13005 Marseille, France; INSERM, UMR 1106, Institut de Neurosciences des Systèmes, 13005 Marseille, France.
3
Aix-Marseille Université, Faculté de Médecine La Timone, 13005 Marseille, France; INSERM, UMR 1106, Institut de Neurosciences des Systèmes, 13005 Marseille, France; APHM, Hôpital de la Timone, Service de Neurophysiologie Clinique, 13385 Marseille, France.
4
Aix-Marseille Université, Faculté de Médecine La Timone, 13005 Marseille, France; APHM, Hôpital de la Timone, Service de Neurochirurgie Fonctionnelle, 13385 Marseille, France.
5
INSERM, UMR 1106, Institut de Neurosciences des Systèmes, 13005 Marseille, France; APHM, Hôpital de la Timone, Service de Neurophysiologie Clinique, 13385 Marseille, France.
6
Aix-Marseille Université, Faculté de Médecine La Timone, 13005 Marseille, France; APHM, Hôpital de la Timone, Service de Neurophysiologie Clinique, 13385 Marseille, France; APHM, Hôpital de la Timone, Service de Neurochirurgie Fonctionnelle, 13385 Marseille, France.
7
Aix-Marseille Université, CNRS, LPC UMR 7290, 13331 Marseille, France.

Abstract

Electroencephalography (EEG), magnetoencephalography (MEG), and intracerebral stereotaxic EEG (SEEG) are the three neurophysiological recording techniques, which are thought to capture the same type of brain activity. Still, the relationships between non-invasive (EEG, MEG) and invasive (SEEG) signals remain to be further investigated. In early attempts at comparing SEEG with either EEG or MEG, the recordings were performed separately for each modality. However such an approach presents substantial limitations in terms of signal analysis. The goal of this technical note is to investigate the feasibility of simultaneously recording these three signal modalities (EEG, MEG and SEEG), and to provide strategies for analyzing this new kind of data. Intracerebral electrodes were implanted in a patient with intractable epilepsy for presurgical evaluation purposes. This patient was presented with a visual stimulation paradigm while the three types of signals were simultaneously recorded. The analysis started with a characterization of the MEG artifact caused by the SEEG equipment. Next, the average evoked activities were computed at the sensor level, and cortical source activations were estimated for both the EEG and MEG recordings; these were shown to be compatible with the spatiotemporal dynamics of the SEEG signals. In the average time-frequency domain, concordant patterns between the MEG/EEG and SEEG recordings were found below the 40 Hz level. Finally, a fine-grained coupling between the amplitudes of the three recording modalities was detected in the time domain, at the level of single evoked responses. Importantly, these correlations have shown a high level of spatial and temporal specificity. These findings provide a case for the ability of trimodal recordings (EEG, MEG, and SEEG) to reach a greater level of specificity in the investigation of brain signals and functions.

KEYWORDS:

EEG; MEG; SEEG; Simultaneous recordings; Single-trial analysis

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center