Format

Send to

Choose Destination
See comment in PubMed Commons below
Chem Res Toxicol. 2014 Jun 16;27(6):968-80. doi: 10.1021/tx5000409. Epub 2014 Jun 5.

Reactive metabolite trapping screens and potential pitfalls: bioactivation of a homomorpholine and formation of an unstable thiazolidine adduct.

Author information

1
DMPK Department, Alderley Park, AstraZeneca UK Ltd. , Macclesfield, Cheshire SK10 4TG, United Kingdom.

Abstract

Successful early attrition of potential problematic compounds is of great importance in the pharmaceutical industry. The lead compound in a recent project targeting neuropathic pain was susceptible to metabolic bioactivation, which produced reactive metabolites and showed covalent binding to protein. Therefore, as a part of the backup series for this compound several structural modifications were explored to mediate the reactive metabolite and covalent binding risk. A homomorpholine containing series of compounds was identified without compromising potency. However, when these compounds were incubated with human liver microsomes in the presence of GSH, Cys-Gly adducts were identified, instead of intact GSH conjugates. This article examines the formation of the Cys-Gly adduct with AZX ([M+H]+ 486) as a representative compound for this series. The AZX-Cys-Gly-adduct ([M+H]+ 662) showed evidence of ring contraction by formation of a thiazolidine-glycine and was additionally shown to be unstable. During its isolation for structural characterization by 1H NMR spectroscopy, it was found to have decomposed to a product with [M+H]+ 446. The characterization and identification of this labile GSH-derived adduct using LC-MS/MS and 1H NMR are described, along with observations around stability. In addition, various structurally related trapping reagents were employed in an attempt to further investigate the reaction mechanism along with a methoxylamine trapping experiment to confirm the structure of the postulated reactive intermediate.

PMID:
24855970
DOI:
10.1021/tx5000409
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center