Send to

Choose Destination
Med Sci Sports Exerc. 2014 Nov;46(11):2091-8. doi: 10.1249/MSS.0000000000000343.

Physical activity offsets the negative effects of a high-fructose diet.

Author information

1Department of Exercise Science, Syracuse University, Syracuse, NY; 2Department of Health Promotion and Wellness, State University of New York at Oswego, Oswego, NY; 3School of Psychology and Exercise Science, Murdoch University, Perth, Western Australia, AUSTRALIA; 4Department of Family and Consumer Sciences, California State University, Long Beach, CA; and 5Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO.



This study aimed to determine the interaction between a high-fructose diet and PA levels on postprandial lipidemia and inflammation in normal-weight, recreationally active individuals.


Twenty-two men and women (age, 21.2 ± 0.6 yr; body mass index, 22.5 ± 0.6 kg · m(-2)) consumed an additional 75 g of fructose for 14 d on two separate occasions: high physical activity (PA) (approximately 12,500 steps per day) (FR+active) and low PA (approximately 4500 steps per day) (FR+inactive). A fructose-rich test meal was given before and at the end of each intervention. Blood was sampled at baseline and for 6 h after the meal for triglycerides (TG), VLDL, total cholesterol, glucose, insulin, tumor necrosis factor-α, interleukin 6, and C-reactive protein.


Log-transformed TG area under the curve (AUC) significantly increased from before (10.1 ± 0.1 mg · dL(-1) × min for 6 h) to after (10.3 ± 0.08 mg · dL(-1) × min for 6 h, P = 0.04) the FR+inactive intervention, with an 88% increase in Δ peak TG (P = 0.009) and an 84% increase in Δ peak VLDL (P = 0.002). Δ Peak interleukin 6 also increased by 116% after the FR+inactive intervention (P = 0.009). Insulin total AUC significantly decreased after FR+active intervention (P = 0.04), with no change in AUC after the FR+inactive intervention. No changes were observed in glucose, tumor necrosis factor-α, and C-reactive protein concentrations (P > 0.05).


Low PA during a period of high fructose intake augments fructose-induced postprandial lipidemia and inflammation, whereas high PA minimizes these fructose-induced metabolic disturbances. Even within a young healthy population, maintenance of high PA (>12,500 steps per day) decreases susceptibility to cardiovascular risk factors associated with elevated fructose consumption.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wolters Kluwer Icon for PubMed Central
Loading ...
Support Center