Format

Send to

Choose Destination
Phys Chem Chem Phys. 2014 Jun 28;16(24):12535-43. doi: 10.1039/c4cp01086h.

Flow dependent performance of microfluidic microbial fuel cells.

Author information

1
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA. hastone@princeton.edu.

Abstract

The integration of Microbial Fuel Cells (MFCs) in a microfluidic geometry can significantly enhance the power density of these cells, which would have more active bacteria per unit volume. Moreover, microfluidic MFCs can be operated in a continuous mode as opposed to the traditional batch-fed mode. Here we investigate the effect of fluid flow on the performance of microfluidic MFCs. The growth and the structure of the bacterial biofilm depend to a large extent on the shear stress of the flow. We report the existence of a range of flow rates for which MFCs can achieve maximum voltage output. When operated under these optimal conditions, the power density of our microfluidic MFC is about 15 times that of a similar-size batch MFC. Furthermore, this optimum suggests a correlation between the behaviour of bacteria and fluid flow.

PMID:
24832908
DOI:
10.1039/c4cp01086h
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Royal Society of Chemistry
Loading ...
Support Center