Format

Send to

Choose Destination
Biochem Biophys Res Commun. 2014 Jun 27;449(2):196-201. doi: 10.1016/j.bbrc.2014.04.166. Epub 2014 May 9.

Time-resolved FRET reveals the structural mechanism of SERCA-PLB regulation.

Author information

1
Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
2
Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address: ddt@umn.edu.

Abstract

We have used time-resolved fluorescence resonance energy transfer (TR-FRET) to characterize the interaction between phospholamban (PLB) and the sarcoplasmic reticulum (SR) Ca-ATPase (SERCA) under conditions that relieve SERCA inhibition. Unphosphorylated PLB inhibits SERCA in cardiac SR, but inhibition is relieved by either micromolar Ca(2+) or PLB phosphorylation. In both cases, it has been proposed that inhibition is relieved by dissociation of the complex. To test this hypothesis, we attached fluorophores to the cytoplasmic domains of SERCA and PLB, and reconstituted them functionally in lipid bilayers. TR-FRET, which permitted simultaneous measurement of SERCA-PLB binding and structure, was measured as a function of PLB phosphorylation and [Ca(2+)]. In all cases, two structural states of the SERCA-PLB complex were resolved, probably corresponding to the previously described T and R structural states of the PLB cytoplasmic domain. Phosphorylation of PLB at S16 completely relieved inhibition, partially dissociated the SERCA-PLB complex, and shifted the T/R equilibrium within the bound complex toward the R state. Since the PLB concentration in cardiac SR is at least 10 times that in our FRET measurements, we calculate that most of SERCA contains bound phosphorylated PLB in cardiac SR, even after complete phosphorylation. 4 μM Ca(2+) completely relieved inhibition but did not induce a detectable change in SERCA-PLB binding or cytoplasmic domain structure, suggesting a mechanism involving structural changes in SERCA's transmembrane domain. We conclude that Ca(2+) and PLB phosphorylation relieve SERCA-PLB inhibition by distinct mechanisms, but both are achieved primarily by structural changes within the SERCA-PLB complex, not by dissociation of that complex.

KEYWORDS:

FRET; Phospholamban; Phosphorylation; SERCA

PMID:
24813991
PMCID:
PMC4054823
DOI:
10.1016/j.bbrc.2014.04.166
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center