Format

Send to

Choose Destination
Cell Stem Cell. 2014 Jul 3;15(1):92-101. doi: 10.1016/j.stem.2014.04.002. Epub 2014 May 8.

Alternative splicing of MBD2 supports self-renewal in human pluripotent stem cells.

Author information

1
Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
2
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Division of Pediatric Hematology Oncology, Howard Hughes Medical Institute, Children's Hospital Boston and Dana-Farber Cancer Institute, Boston, MA 02115, USA; A(∗)STAR Institute of Molecular and Cell Biology and Department of Biological Sciences, National University of Singapore, Singapore 138673, Singapore.
3
Howard Hughes Medical Institute, Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
4
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Division of Pediatric Hematology Oncology, Howard Hughes Medical Institute, Children's Hospital Boston and Dana-Farber Cancer Institute, Boston, MA 02115, USA.
5
Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
6
Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Bioinformatics Program, Boston University, Boston, MA 02115, USA.
7
Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA.
8
A(∗)STAR Institute of Molecular and Cell Biology and Department of Biological Sciences, National University of Singapore, Singapore 138673, Singapore.
9
Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.
10
Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
11
Howard Hughes Medical Institute, Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
12
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Division of Pediatric Hematology Oncology, Howard Hughes Medical Institute, Children's Hospital Boston and Dana-Farber Cancer Institute, Boston, MA 02115, USA. Electronic address: george.daley@childrens.harvard.edu.
13
Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Electronic address: jarrod_marto@dfci.harvard.edu.

Abstract

Alternative RNA splicing (AS) regulates proteome diversity, including isoform-specific expression of several pluripotency genes. Here, we integrated global gene expression and proteomic analyses and identified a molecular signature suggesting a central role for AS in maintaining human pluripotent stem cell (hPSC) self-renewal. We demonstrate that the splicing factor SFRS2 is an OCT4 target gene required for pluripotency. SFRS2 regulates AS of the methyl-CpG binding protein MBD2, whose isoforms play opposing roles in maintenance of and reprogramming to pluripotency. Although both MDB2a and MBD2c are enriched at the OCT4 and NANOG promoters, MBD2a preferentially interacts with repressive NuRD chromatin remodeling factors and promotes hPSC differentiation, whereas overexpression of MBD2c enhances reprogramming of fibroblasts to pluripotency. The miR-301 and miR-302 families provide additional regulation by targeting SFRS2 and MDB2a. These data suggest that OCT4, SFRS2, and MBD2 participate in a positive feedback loop, regulating proteome diversity in support of hPSC self-renewal and reprogramming.

PMID:
24813856
PMCID:
PMC4082735
DOI:
10.1016/j.stem.2014.04.002
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Secondary source ID, Grant support

Publication types

MeSH terms

Substances

Secondary source ID

Grant support

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center