Format

Send to

Choose Destination
J Digit Imaging. 2014 Oct;27(5):601-9. doi: 10.1007/s10278-014-9696-x.

Quantitative detection of cirrhosis: towards the development of computer-assisted detection method.

Author information

1
Department of Radiology, University of Southern California, 1500 San Pablo Street, Second Floor Imaging, Los Angeles, CA, 90033, USA, hth_783@usc.edu.

Abstract

There are distinct morphologic features of cirrhosis on CT examinations; however, such impressions may be subtle or subjective. The purpose of this study is to build a computer-aided diagnosis (CAD) method to help radiologists with this diagnosis. One hundred sixty-seven abdominal CT examinations were randomly divided into training (nā€‰=ā€‰88) and validation (nā€‰=ā€‰79) sets. Livers were analyzed for morphological markers of cirrhosis and logistic regression models were created. Using the area under curve (AUC) for model performance, the best model had 0.89 for the training set and 0.85 for the validation set. For radiology reports, sensitivity of reporting cirrhosis was 0.45 and specificity 0.99. Using the predictive model adjunctively, radiologists' sensitivity increased to 0.63 and specificity slightly decreased to 0.97. This study demonstrates that quantifying morphological features in livers may be utilized for diagnosing cirrhosis and for developing a CAD method for it.

PMID:
24811859
PMCID:
PMC4171427
DOI:
10.1007/s10278-014-9696-x
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center