Format

Send to

Choose Destination
See comment in PubMed Commons below
FEBS Lett. 2014 Jun 5;588(12):2049-54. doi: 10.1016/j.febslet.2014.04.034. Epub 2014 May 4.

Peroxisomal plant nitric oxide synthase (NOS) protein is imported by peroxisomal targeting signal type 2 (PTS2) in a process that depends on the cytosolic receptor PEX7 and calmodulin.

Author information

1
Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, E-18080 Granada, Spain. Electronic address: javier.corpas@eez.csic.es.
2
Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, University of Jaén, Campus "Las Lagunillas", E-23071 Jaén, Spain.

Abstract

Nitric oxide (NO) production in plant peroxisomes by l-arginine-dependent NO synthase activity has been proven. The PEX5 and PEX7 PTS receptors, which recognize PTS1- and PTS2-containing proteins, are localized in the cytosol. Using AtPex5p and AtPex7p knockdown in Arabidopsis by RNA interference (RNAi) designated as pex5i and pex7i, we found that the l-arginine-dependent protein responsible for NO generation in peroxisomes appears to be imported through an N-terminal PTS2. Pharmacological analyzes using a calcium channel blocker and calmodulin (CaM) antagonist show that the import of the peroxisomal NOS protein also depends on calcium and calmodulin.

KEYWORDS:

Arabidopsis thaliana; Nitric oxide; Nitric oxide synthase; Peroxin; Peroxisomal targeting signal; Peroxisome

PMID:
24801177
DOI:
10.1016/j.febslet.2014.04.034
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center