Send to

Choose Destination
See comment in PubMed Commons below
J Exp Biol. 2014 May 1;217(Pt 9):1485-95. doi: 10.1242/jeb.094201.

Free-swimming northern elephant seals have low field metabolic rates that are sensitive to an increased cost of transport.

Author information

  • 1Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.


Widely ranging marine predators often adopt stereotyped, energy-saving behaviours to minimize the energetic cost of transport while maximizing energy gain. Environmental and anthropogenic disturbances can disrupt energy balance by prompting avoidance behaviours that increase transport costs, thereby decreasing foraging efficiency. We examined the ability of 12 free-ranging, juvenile northern elephant seals (Mirounga angustirostris) to mitigate the effects of experimentally increased transport costs by modifying their behaviour and/or energy use in a compensatory manner. Under normal locomotion, elephant seals had low energy requirements (106.5±28.2 kJ kg(-1) day(-1)), approaching or even falling below predictions of basal requirements. Seals responded to a small increase in locomotion costs by spending more time resting between dives (149±44 s) compared with matched control treatments (102±11 s; P<0.01). Despite incurred costs, most other dive and transit behaviours were conserved across treatments, including fixed, rhythmic swimming gaits. Because of this, and because each flipper stroke had a predictable effect on total costs (P<0.001), total energy expenditure was strongly correlated with time spent at sea under both treatments (P<0.0001). These results suggest that transiting elephant seals have a limited capacity to modify their locomotory behaviour without increasing their transport costs. Based on this, we conclude that elephant seals and other ocean predators occupying similar niches may be particularly sensitive to increased transport costs incurred when avoiding unanticipated disturbances.


Accelerometer; Disturbance; Drag; Energetics; Field metabolic rate; Flipper stroking; Foraging; Locomotion; Translocation

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center