Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Biol Cell. 2014 Jun 15;25(12):1867-76. doi: 10.1091/mbc.E14-03-0839. Epub 2014 Apr 30.

Lipid domain-dependent regulation of single-cell wound repair.

Author information

1
Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706Department of Zoology, University of Wisconsin-Madison, Madison, WI 53706.
2
Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706.
3
Department of Zoology, University of Wisconsin-Madison, Madison, WI 53706.
4
Institut des Neurosciences Cellulaires et Integratives, Centre National de la Recherche Scientifique UPR 3212, and Université de Strasbourg, 67400 Strasbourg, France.
5
Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706Department of Zoology, University of Wisconsin-Madison, Madison, WI 53706Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706 wmbement@wisc.edu.

Abstract

After damage, cells reseal their plasma membrane and repair the underlying cortical cytoskeleton. Although many different proteins have been implicated in cell repair, the potential role of specific lipids has not been explored. Here we report that cell damage elicits rapid formation of spatially organized lipid domains around the damage site, with different lipids concentrated in different domains as a result of both de novo synthesis and transport. One of these lipids-diacylglycerol (DAG)-rapidly accumulates in a broad domain that overlaps the zones of active Rho and Cdc42, GTPases that regulate repair of the cortical cytoskeleton. Formation of the DAG domain is required for Cdc42 and Rho activation and healing. Two DAG targets, protein kinase C (PKC) β and η, are recruited to cell wounds and play mutually antagonistic roles in the healing process: PKCβ participates in Rho and Cdc42 activation, whereas PKCη inhibits Rho and Cdc42 activation. The results reveal an unexpected diversity in subcellular lipid domains and the importance of such domains for a basic cellular process.

PMID:
24790096
PMCID:
PMC4055266
DOI:
10.1091/mbc.E14-03-0839
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center