Format

Send to

Choose Destination
J Steroid Biochem Mol Biol. 2014 Sep;143:277-84. doi: 10.1016/j.jsbmb.2014.04.008. Epub 2014 Apr 28.

Understanding androgen action in adipose tissue.

Author information

1
Centre for Endocrinology, Diabetes and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK. Electronic address: m.oreilly@bham.ac.uk.
2
Centre for Endocrinology, Diabetes and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

Abstract

Androgens play an important role in regulation of body fat distribution in humans. They exert direct effects on adipocyte differentiation in a depot-specific manner, via the androgen receptor (AR), leading to modulation of adipocyte size and fat compartment expansion. Androgens also impact directly on key adipocyte functions including insulin signalling, lipid metabolism, fatty acid uptake and adipokine production. Androgen excess and deficiency have implications for metabolic health in both males and females, and these metabolic effects may be mediated through adipose tissue via effects on fat distribution, adipocyte function and lipolysis. Research into the field of androgen metabolism in human and animal adipose tissue has produced inconsistent results; it is important to take into account the sex-, depot- and organism-specific effects of androgens in fat. In general, studies point towards a stimulatory effect on lipolysis, with impairment of adipocyte differentiation, insulin signalling and adipokine generation. Observed effects are frequently gender-specific. Adipose tissue is an important organ of pre-receptor androgen metabolism, through which local androgen availability is rigorously controlled. Adipose androgen exposure is tightly controlled by isoenzymes of AKR1C, 5α-reductase and others, but regulation of the balance between generation and irreversible inactivation remains poorly understood. In particular, AKR1C2 and AKR1C3 are crucial in the regulation of local androgen bioavailability within adipose tissue. These isoforms control the balance between activation of androstenedione (A) to testosterone (T) by the 17β-hydroxysteroid dehydrogenase activity (17β-HSD) of AKR1C3, or inactivation of 5α-dihydrotestosterone (DHT) to 5α-androstane-3α,17β-diol by the 3α-hydroxysteroid dehydrogenase (3α-HSD) activity of AKR1C2. Most studies suggest that androgen inactivation is the predominant reaction in fat, particularly in the abdominal subcutaneous (SC) depot. Modulation of local adipose androgen availability may afford future therapeutic options to improve metabolic phenotype in disorders of androgen excess and deficiency.

KEYWORDS:

Adipose tissue; Androgens; Pre-receptor metabolism

PMID:
24787657
DOI:
10.1016/j.jsbmb.2014.04.008
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center