Format

Send to

Choose Destination
J Mol Biol. 1989 Aug 20;208(4):575-86.

Differentially expressed trmD ribosomal protein operon of Escherichia coli is transcribed as a single polycistronic mRNA species.

Author information

1
Department of Microbiology, Umeå University, Sweden.

Abstract

The trmD operon is a four-cistron operon in which the first and fourth genes encode ribosomal proteins S16 (rpsP) and L19 (rplS), respectively. The second gene encodes a 21,000 Mr polypeptide of unknown function and the third gene (trmD) encodes the enzyme tRNA(m1G37)methyltransferase, which catalyzes the formation of 1-methylguanosine (m1G) next to the 3' end of the anticodon (position 37) of some tRNAs in Escherichia coli. Here we show under all regulatory conditions studied, transcription initiates at one unique site, and the entire operon is transcribed into one polycistronic mRNA. Between the promoter and the first gene, rpsP, an attenuator-like structure is found (delta G = -18 kcal; 1 cal = 4.184 J), followed by four uridine residues. This structure is functional in vitro, and terminates more than two-thirds of the transcripts. The different parts of the trmD operon mRNA decay at a uniform rate. The stability of the trmD mRNA is not reduced with decreasing growth rate, which is in contrast to what has been found for other ribosomal protein mRNAs. Furthermore, earlier experiments have shown the existence of differential expression as well as non-co-ordinate regulation within the operon. Our results are consistent with the regulation of the trmD operon being due to some mechanism(s) operating at the post-transcriptional level, and do not involve differential degradation of different mRNA segments, internal promoters or internal terminators.

PMID:
2478711
DOI:
10.1016/0022-2836(89)90149-6
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center