Send to

Choose Destination
FASEB J. 2014 Aug;28(8):3589-99. doi: 10.1096/fj.13-245613. Epub 2014 May 1.

Cellular contractility and extracellular matrix stiffness regulate matrix metalloproteinase activity in pancreatic cancer cells.

Author information

Department of Genetics, Development, and Cell Biology, Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, and.
Department of Genetics, Development, and Cell Biology, Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA


The pathogenesis of cancer is often driven by local invasion and metastasis. Recently, mechanical properties of the tumor microenvironment have been identified as potent regulators of invasion and metastasis, while matrix metalloproteinases (MMPs) are classically known as significant enhancers of cancer cell migration and invasion. Here we have been able to sensitively measure MMP activity changes in response to specific extracellular matrix (ECM) environments and cell contractility states. Cells of a pancreatic cancer cell line, Panc-1, up-regulate MMP activities between 3- and 10-fold with increased cell contractility. Conversely, they down-regulate MMP activities when contractility is blocked to levels seen with pan-MMP activity inhibitors. Similar, albeit attenuated, responses are seen in other pancreatic cancer cell lines, BxPC-3 and AsPC-1. In addition, MMP activity was modulated by substrate stiffness, collagen gel concentration, and the degree of collagen cross-linking, when cells were plated on collagen gels ranging from 0.5 to 5 mg/ml that span the physiological range of substrate stiffness (50-2000 Pa). Panc-1 cells showed enhanced MMP activity on stiffer substrates, whereas BxPC-3 and AsPC-1 cells showed diminished MMP activity. In addition, eliminating heparan sulfate proteoglycans using heparinase completely abrogated the mechanical induction of MMP activity. These results demonstrate the first functional link between MMP activity, contractility, and ECM stiffness and provide an explanation as to why stiffer environments result in enhanced cell migration and invasion.


blebbistatin; collagen; invasion; quenched cleavage peptide; transglutaminase

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center