Hydrothermal synthesis of K2CO3-promoted hydrotalcite from hydroxide-form precursors for novel high-temperature CO2 sorbent

ACS Appl Mater Interfaces. 2014 May 14;6(9):6914-9. doi: 10.1021/am500720f. Epub 2014 May 1.

Abstract

In many materials for CO2 sorption, hydrotalcite is attracting substantial attention as a high temperature (200-500 °C) CO2 sorbent because of its fast sorption/desorption kinetics and easy regenerability. However, the CO2-sorption capacity of conventional hydrotalcite is relatively low for large-scale commercial use. To enhance CO2-sorption capacity, hydrotalcite is conventionally impregnated with alkali metals such as K2CO3. Although K2CO3-impregnated hydrotalcite has high CO2-sorption capacity, the preparation method takes long time and is inconvenient because hydrotalcite synthesis step and alkali metal impregnation step are separated. In this study, K2CO3-promoted hydrotalcite was newly synthesized from hydroxide-form percursors by a simple and eco-friendly method without a solvent-consuming washing step. Analysis based on X-ray diffraction indicated that the prepared samples had structures of well-defined hydrotalcite crystalline and un-reacted Mg(OH)2 precursor. Moreover, K2CO3 was successfully incorporated in hydrotalcite during the synthesis step. The prepared K2CO3-promoted hydrotalcite showed high CO2-sorption capacity and had potential for use as a high-temperature CO2 sorbent.

Publication types

  • Research Support, Non-U.S. Gov't