Format

Send to

Choose Destination
World J Gastroenterol. 2014 Apr 28;20(16):4648-61. doi: 10.3748/wjg.v20.i16.4648.

Resveratrol inhibits collagen I synthesis by suppressing IGF-1R activation in intestinal fibroblasts.

Author information

1
Ping Li, Ying Zhu, Yao-Yao Gong, Yun Wang, Ding Heng, Lin Lin, Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.

Abstract

AIM:

To investigate whether resveratrol (3,4,5-trihydroxy-trans-stilbene) inhibits collagen I synthesis induced by insulin growth factor-1 (IGF-1) in intestinal fibroblasts, and to explore the possible molecular mechanisms.

METHODS:

Male Sprague-Dawley rats were randomly divided into two groups: a control group and a 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis group. After 21 d of TNBS administration, the degree of inflammation and fibrosis in colon was measured by HE staining and Masson's trichrome staining. Western blotting was used to examine collagen I, IGF-1 and silent information regulator 1 (SIRT1) protein expression in colitis tissues. Western blotting and quantitative real-time polymerase chain reaction were used to characterize collagen I protein and col1a2 mRNA expression in mouse intestinal fibroblasts and CCD-(18)Co cells treated with IGF-1. A MEK inhibitor (U0126) was used to determine whether IGF-1-induced collagen I expression was mediated by extracellular signal-regulated kinase 1/2 (ERK1/2)-dependent mechanism. Effects of resveratrol on collagen I protein level, insulin growth factor-1 receptor (IGF-1R) and ERK1/2 phosphorylation levels were also examined after IGF-1 treatment in fibroblasts. To evaluate whether SIRT1 was necessary for the anti-fibrosis effect of resveratrol, cells were transfected with SIRT1-specific small interfering RNAs, wild-type SIRT1, and deacetylase-inactive mutant SIRT1.

RESULTS:

Collagen I and IGF-1 expression was increased, and SIRT1 expression was decreased (0.67 ± 0.04 vs 1.05 ± 0.07, P < 0.001) in TNBS-induced colitis compared with the control group. In vitro, IGF-1 could induce collagen I expression, mainly through the ERK 1/2 signal pathway. Resveratrol reduced basal and IGF-1-induced collagen I gene and protein expression in intestinal fibroblasts. Overexpression of wild-type SIRT1, not deacetylase-inactive mutant SIRT1, decreased expression of collagen I induced by IGF-1. Moreover, silencing SIRT1 restored collagen I expression in fibroblasts challenged with resveratrol. However, disruption of SIRT1 did not influence the anti-fibrotic effects of resveratrol and IGF-1-induced collagen I expression. Further analysis revealed that resveratrol significantly decreased phosphorylation of IGF-1R and its downstream signaling molecules by inhibiting IGF-1 binding to its receptor.

CONCLUSION:

Our data suggest that resveratrol effectively inhibits collagen I synthesis in IGF-1-stimulated fibroblasts, partly by inhibiting IGF-1R activation, and SIRT1 is also responsible for the process.

KEYWORDS:

Fibroblasts; Insulin-like growth factor-1; Intestinal fibrosis; Resveratrol; Silent information regulator 1

PMID:
24782617
PMCID:
PMC4000501
DOI:
10.3748/wjg.v20.i16.4648
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Baishideng Publishing Group Inc. Icon for PubMed Central
Loading ...
Support Center