Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell. 2014 Apr 24;157(3):549-64. doi: 10.1016/j.cell.2014.04.006.

Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors.

Author information

1
Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, MA 02116, USA.
2
Dana Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Boston, MA 02116, USA.
3
Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA.
4
Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Dana Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Boston, MA 02116, USA; Howard Hughes Medical Institute; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
5
Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, MA 02116, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA. Electronic address: derrick.rossi@childrens.harvard.edu.

Erratum in

  • Cell. 2014 Jul 3;158(1):226.

Abstract

Hematopoietic stem cells (HSCs) sustain blood formation throughout life and are the functional units of bone marrow transplantation. We show that transient expression of six transcription factors Run1t1, Hlf, Lmo2, Prdm5, Pbx1, and Zfp37 imparts multilineage transplantation potential onto otherwise committed lymphoid and myeloid progenitors and myeloid effector cells. Inclusion of Mycn and Meis1 and use of polycistronic viruses increase reprogramming efficacy. The reprogrammed cells, designated induced-HSCs (iHSCs), possess clonal multilineage differentiation potential, reconstitute stem/progenitor compartments, and are serially transplantable. Single-cell analysis revealed that iHSCs derived under optimal conditions exhibit a gene expression profile that is highly similar to endogenous HSCs. These findings demonstrate that expression of a set of defined factors is sufficient to activate the gene networks governing HSC functional identity in committed blood cells. Our results raise the prospect that blood cell reprogramming may be a strategy for derivation of transplantable stem cells for clinical application.

PMID:
24766805
PMCID:
PMC4060823
DOI:
10.1016/j.cell.2014.04.006
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center