Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Biol Cell. 2014 Jun 15;25(12):1845-53. doi: 10.1091/mbc.E13-08-0450. Epub 2014 Apr 23.

Actomyosin sliding is attenuated in contractile biomimetic cortices.

Author information

1
Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637.
2
Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637Department of Physics and James Franck Institute, University of Chicago, Chicago, IL 60637 gardel@uchicago.edu.

Abstract

Myosin II motors embedded within the actin cortex generate contractile forces to modulate cell shape in essential behaviors, including polarization, migration, and division. In sarcomeres, myosin II-mediated sliding of antiparallel F-actin is tightly coupled to myofibril contraction. By contrast, cortical F-actin is highly disordered in polarity, orientation, and length. How the disordered nature of the actin cortex affects actin and myosin movements and resultant contraction is unknown. Here we reconstitute a model cortex in vitro to monitor the relative movements of actin and myosin under conditions that promote or abrogate network contraction. In weakly contractile networks, myosin can translocate large distances across stationary F-actin. By contrast, the extent of relative actomyosin sliding is attenuated during contraction. Thus actomyosin sliding efficiently drives contraction in actomyosin networks despite the high degree of disorder. These results are consistent with the nominal degree of relative actomyosin movement observed in actomyosin assemblies in nonmuscle cells.

PMID:
24760970
PMCID:
PMC4055264
DOI:
10.1091/mbc.E13-08-0450
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center