Format

Send to

Choose Destination
PLoS One. 2014 Apr 23;9(4):e95979. doi: 10.1371/journal.pone.0095979. eCollection 2014.

Microsecond molecular dynamics simulations of Mg²⁺- and K⁺-bound E1 intermediate states of the calcium pump.

Author information

1
Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America.

Abstract

We have performed microsecond molecular dynamics (MD) simulations to characterize the structural dynamics of cation-bound E1 intermediate states of the calcium pump (sarcoendoplasmic reticulum Ca²⁺-ATPase, SERCA) in atomic detail, including a lipid bilayer with aqueous solution on both sides. X-ray crystallography with 40 mM Mg²⁺ in the absence of Ca²⁺ has shown that SERCA adopts an E1 structure with transmembrane Ca²⁺-binding sites I and II exposed to the cytosol, stabilized by a single Mg²⁺ bound to a hybrid binding site I'. This Mg²⁺-bound E1 intermediate state, designated E1•Mg²⁺, is proposed to constitute a functional SERCA intermediate that catalyzes the transition from E2 to E1•2Ca²⁺ by facilitating H⁺/Ca²⁺ exchange. To test this hypothesis, we performed two independent MD simulations based on the E1•Mg²⁺ crystal structure, starting in the presence or absence of initially-bound Mg²⁺. Both simulations were performed for 1 µs in a solution containing 100 mM K⁺ and 5 mM Mg²⁺ in the absence of Ca²⁺, mimicking muscle cytosol during relaxation. In the presence of initially-bound Mg²⁺, SERCA site I' maintained Mg²⁺ binding during the entire MD trajectory, and the cytosolic headpiece maintained a semi-open structure. In the absence of initially-bound Mg²⁺, two K⁺ ions rapidly bound to sites I and I' and stayed loosely bound during most of the simulation, while the cytosolic headpiece shifted gradually to a more open structure. Thus MD simulations predict that both E1•Mg²⁺ and E•2K+ intermediate states of SERCA are populated in solution in the absence of Ca²⁺, with the more open 2K+-bound state being more abundant at physiological ion concentrations. We propose that the E1•2K⁺ state acts as a functional intermediate that facilitates the E2 to E1•2Ca²⁺ transition through two mechanisms: by pre-organizing transport sites for Ca²⁺ binding, and by partially opening the cytosolic headpiece prior to Ca²⁺ activation of nucleotide binding.

PMID:
24760008
PMCID:
PMC3997511
DOI:
10.1371/journal.pone.0095979
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center