Format

Send to

Choose Destination
PLoS One. 2014 Apr 23;9(4):e96117. doi: 10.1371/journal.pone.0096117. eCollection 2014.

Antiangiogenic treatment diminishes renal injury and dysfunction via regulation of local AKT in early experimental diabetes.

Author information

1
State Key Laboratory of Organ Failure Research, Guangzhou, Guangdong, PRC; National Clinical Research Center of Kidney Disease, Guangzhou, Guangdong, PRC; Guangdong Provincial Institute of Nephrology, Guangzhou, Guangdong, PRC; Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PRC.
2
Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PRC.

Erratum in

  • PLoS One. 2014;9(7):e103926.

Abstract

In view of increased vascular endothelial growth factor-A (VEGF-A) expression and renal dysfunction in early diabetes, we designed a study to test whether VEGF-A inhibition can prevent early renal injury and dysfunction. We investigated the relationship and mechanism between VEGF-A and AKT regulation. In vitro, VEGF-A small interfering RNA (siRNA) and AKT inhibitor MK-2206 were employed to podocytes and NRK-52 cells cultured in high glucose (30 mM). In vivo, the antiangiogenic drug endostatin was administered in 12 week-old streptozotocin-induced male Sprague Dawley rats. The levels of VEGF-A, AKT, phosphorylated Ser⁴⁷³-AKT, phosphorylated Thr³⁰⁸-AKT, nephrin, angiotensin II (Ang II), angiotensin type II receptor 1 (ATR1) were examined using quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis and immunohistochemistry. Interactions between phosphorylated Thr³⁰⁸-AKT and either nephrin in podocytes or Ang II in renal tubules were studied, respectively, using confocal immunofluorescence microscopy and immunoprecipitation. Silencing VEGF-A in podocytes upregulated phosphorylated Thr³⁰⁸-AKT and nephrin. Silencing VEGF-A in NRK-52E cells upregulated phosphorylated Thr³⁰⁸-AKT while downregulated Ang II and ATR1. MK-2206 enhanced VEGF-A expression in both podocytes and NRK-52E cells by inhibiting AKT activities. In diabetic rat kidneys, VEGF-A was upregulated and phosphorylated Thr³⁰⁸-AKT colocalized with either nephrin in podocytes or Ang II in renal tubules. With the endostatin treatment, the level of VEGF-A decreased while phosphorylated Thr³⁰⁸-AKT increased in both glomeruli and renal tubules. Treatment with endostatin upregulated nephrin in podocytes while downregulated Ang II and AT1R in renal tubules. Glomerular mesangial expansion was attenuated by the endostatin treatment, however, differences did not reach statistical significance. Endostatin ameliorated the interstitial fibrosis, urine albumin excretion rate (UAER) and albumin to creatinine ratio. We conclude that phosphorylated Thr³⁰⁸-AKT regulates VEGF-A expression by interacting with either nephrin in glomeruli or Ang II in renal tubules. Antiangiogenic treatment improves renal injury and function in early experimental diabetes.

PMID:
24759991
PMCID:
PMC3997561
DOI:
10.1371/journal.pone.0096117
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center