Format

Send to

Choose Destination
Nat Rev Cancer. 2014 May;14(5):299-313. doi: 10.1038/nrc3721.

Principles and methods of integrative genomic analyses in cancer.

Author information

1
1] Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway. [2] K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0313 Oslo, Norway. [3] Department of Clinical Molecular Oncology, Division of Medicine, Akershus University Hospital, 1478 Ahus, Norway.
2
1] K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0313 Oslo, Norway. [2] Division for Biomedical Informatics, Department of Computer Science, University of Oslo, 0316 Oslo, Norway.
3
1] Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway. [2] K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0313 Oslo, Norway. [3] Department of Pathology, Oslo University Hospital, 0450 Oslo, Norway.
4
1] Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway. [2] K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0313 Oslo, Norway. [3] Department of Oncology, Division of Cancer, Surgery and Transplantation, Oslo University Hospital, 0450 Oslo, Norway.
5
1] Statistics for Innovation, Norwegian Computing Center, 0314 Oslo, Norway. [2] Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, PO Box 1122 Blindern, 0317 Oslo, Norway.
6
1] Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway. [2] K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0313 Oslo, Norway.

Abstract

Combined analyses of molecular data, such as DNA copy-number alteration, mRNA and protein expression, point to biological functions and molecular pathways being deregulated in multiple cancers. Genomic, metabolomic and clinical data from various solid cancers and model systems are emerging and can be used to identify novel patient subgroups for tailored therapy and monitoring. The integrative genomics methodologies that are used to interpret these data require expertise in different disciplines, such as biology, medicine, mathematics, statistics and bioinformatics, and they can seem daunting. The objectives, methods and computational tools of integrative genomics that are available to date are reviewed here, as is their implementation in cancer research.

PMID:
24759209
DOI:
10.1038/nrc3721
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center