Format

Send to

Choose Destination
World J Diabetes. 2014 Apr 15;5(2):97-114. doi: 10.4239/wjd.v5.i2.97.

Expression quantitative trait analyses to identify causal genetic variants for type 2 diabetes susceptibility.

Author information

1
Swapan Kumar Das, Neeraj Kumar Sharma, Section on Endocrinology and Metabolism, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.

Abstract

Type 2 diabetes (T2D) is a common metabolic disorder which is caused by multiple genetic perturbations affecting different biological pathways. Identifying genetic factors modulating the susceptibility of this complex heterogeneous metabolic phenotype in different ethnic and racial groups remains challenging. Despite recent success, the functional role of the T2D susceptibility variants implicated by genome-wide association studies (GWAS) remains largely unknown. Genetic dissection of transcript abundance or expression quantitative trait (eQTL) analysis unravels the genomic architecture of regulatory variants. Availability of eQTL information from tissues relevant for glucose homeostasis in humans opens a new avenue to prioritize GWAS-implicated variants that may be involved in triggering a causal chain of events leading to T2D. In this article, we review the progress made in the field of eQTL research and knowledge gained from those studies in understanding transcription regulatory mechanisms in human subjects. We highlight several novel approaches that can integrate eQTL analysis with multiple layers of biological information to identify ethnic-specific causal variants and gene-environment interactions relevant to T2D pathogenesis. Finally, we discuss how the eQTL analysis mediated search for "missing heritability" may lead us to novel biological and molecular mechanisms involved in susceptibility to T2D.

KEYWORDS:

Expression quantitative trait locus; Expression regulatory SNPs; Gene-environment interaction; Genome-wide association study; Single nucleotide polymorphisms; Type 2 diabetes

Supplemental Content

Full text links

Icon for Baishideng Publishing Group Inc. Icon for PubMed Central
Loading ...
Support Center