Format

Send to

Choose Destination
J Am Chem Soc. 2014 May 14;136(19):6978-86. doi: 10.1021/ja500328k. Epub 2014 May 6.

Particle size effects in the catalytic electroreduction of CO₂ on Cu nanoparticles.

Author information

1
Department of Chemistry, Chemical Engineering Division, Technical University Berlin , 10623 Berlin, Germany.

Abstract

A study of particle size effects during the catalytic CO2 electroreduction on size-controlled Cu nanoparticles (NPs) is presented. Cu NP catalysts in the 2-15 nm mean size range were prepared, and their catalytic activity and selectivity during CO2 electroreduction were analyzed and compared to a bulk Cu electrode. A dramatic increase in the catalytic activity and selectivity for H2 and CO was observed with decreasing Cu particle size, in particular, for NPs below 5 nm. Hydrocarbon (methane and ethylene) selectivity was increasingly suppressed for nanoscale Cu surfaces. The size dependence of the surface atomic coordination of model spherical Cu particles was used to rationalize the experimental results. Changes in the population of low-coordinated surface sites and their stronger chemisorption were linked to surging H2 and CO selectivities, higher catalytic activity, and smaller hydrocarbon selectivity. The presented activity-selectivity-size relations provide novel insights in the CO2 electroreduction reaction on nanoscale surfaces. Our smallest nanoparticles (~2 nm) enter the ab initio computationally accessible size regime, and therefore, the results obtained lend themselves well to density functional theory (DFT) evaluation and reaction mechanism verification.

PMID:
24746172
DOI:
10.1021/ja500328k

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center