Format

Send to

Choose Destination
J Pharmacol Exp Ther. 2014 Jul;350(1):22-35. doi: 10.1124/jpet.114.212910. Epub 2014 Apr 16.

Inhibition of phosphatidylinositol 3-kinase/AKT signaling by NVP-BKM120 promotes ABT-737-induced toxicity in a caspase-dependent manner through mitochondrial dysfunction and DNA damage response in established and primary cultured glioblastoma cells.

Author information

1
Department of Neurologic Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (E.P.J., D.R.P., K.A.F., I.F.P.); University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (E.P.J., D.R.P., A.M., K.A.F., I.F.P.); and University of Pittsburgh Brain Tumor Center, Pittsburgh, Pennsylvania (K.A.F., I.F.P.).
2
Department of Neurologic Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (E.P.J., D.R.P., K.A.F., I.F.P.); University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (E.P.J., D.R.P., A.M., K.A.F., I.F.P.); and University of Pittsburgh Brain Tumor Center, Pittsburgh, Pennsylvania (K.A.F., I.F.P.) ian.pollack@chp.edu.

Abstract

Identification of therapeutic strategies that might enhance the efficacy of B-cell lymphoma-2 (Bcl-2) inhibitor ABT-737 [N-{4-[4-(4-chloro-biphenyl-2-ylmethyl)-piperazin-1-yl]-benzoyl}-4-(3-dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro-benzenesulfonamide] is of great interest in many cancers, including glioma. Our recent study suggested that Akt is a crucial mediator of apoptosis sensitivity in response to ABT-737 in glioma cell lines. Inhibitors of phosphatidylinositol 3-kinase (PI3K)/Akt are currently being assessed clinically in patients with glioma. Because PI3K/Akt inhibition would be expected to have many proapoptotic effects, we hypothesized that there may be unique synergy between PI3K inhibitors and Bcl-2 homology 3 mimetics. Toward this end, we assessed the combination of the PI3K/Akt inhibitor NVP-BKM120 [5-(2,6-dimorpholinopyrimidin-4-yl)-4-(trifluoromethyl)pyridin-2-amine] and the Bcl-2 family inhibitor ABT-737 in established and primary cultured glioma cells. We found that the combined treatment with these agents led to a significant activation of caspase-8 and -3, PARP, and cell death, irrespective of PTEN status. The enhanced lethality observed with this combination also appears dependent on the loss of mitochondrial membrane potential and release of cytochrome c, smac/DIABLO, and apoptosis-inducing factor to the cytosol. Further study revealed that the upregulation of Noxa, truncation of Bid, and activation of Bax and Bak caused by these inhibitors were the key factors for the synergy. In addition, we demonstrated the release of proapoptotic proteins Bim and Bak from Mcl-1. We found defects in chromosome segregation leading to multinuclear cells and loss of colony-forming ability, suggesting the potential use of NVP-BKM120 as a promising agent to improve the anticancer activities of ABT-737.

PMID:
24741074
PMCID:
PMC4056270
DOI:
10.1124/jpet.114.212910
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center