Send to

Choose Destination
Acc Chem Res. 2014 May 20;47(5):1575-86. doi: 10.1021/ar500037v. Epub 2014 Apr 16.

Dynamic covalent chemistry approaches toward macrocycles, molecular cages, and polymers.

Author information

Department of Chemistry and Biochemistry, University of Colorado at Boulder , Boulder, Colorado 80309, United States.


The current research in the field of dynamic covalent chemistry includes the study of dynamic covalent reactions, catalysts, and their applications. Unlike noncovalent interactions utilized in supramolecular chemistry, the formation/breakage of covalent bonding has slower kinetics and usually requires the aid of a catalyst. Catalytic systems that enable efficient thermodynamic equilibrium are thus essential. In this Account, we describe the development of efficient catalysts for alkyne metathesis, and discuss the application of dynamic covalent reactions (mainly imine, olefin, and alkyne metathesis) in the development of organic functional materials. Alkyne metathesis is an emerging dynamic covalent reaction that offers robust and linear acetylene linkages. By introducing a podand motif into the catalyst ligand design, we have developed a series of highly active and robust alkyne metathesis catalysts, which, for the first time, enabled the one-step covalent assembly of ethynylene-linked functional molecular cages. Imine chemistry and olefin metathesis are among the most well-established reversible reactions, and have also been our main synthetic tools. Various shape-persistent macrocycles and covalent organic polyhedrons have been efficiently constructed in one-step through dynamic imine chemistry and olefin metathesis. The geometrical features and solubilizing groups of the building blocks as well as the reaction kinetics have significant effect on the outcome of a covalent assembly process. More recently, we explored the orthogonality of imine and olefin metatheses, and successfully synthesized heterosequenced macrocycles and molecular cages through one-pot orthogonal dynamic covalent chemistry. In addition to discrete molecular architectures, functional polymeric materials can also be accessed through dynamic covalent reactions. Defect-free solution-processable conjugated polyaryleneethynylenes and polydiacetylenes have been prepared through alkyne metathesis polymerization. We prepared imine- or ethynylene-linked porous polymer networks, which exhibit permanent porosity with high specific surface areas. Our most recent contribution is the discovery of a recyclable polyimine material whose self-healing can be activated simply by heating or water treatment. The facile access to complex functional organic molecules through dynamic covalent chemistry has allowed us to explore their exciting applications in gas adsorption/separation, host-guest chemistry, and nanocomposite fabrication. It is clear that there are significant opportunities for improved dynamic covalent systems and their more widespread applications in materials science.


Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center