Format

Send to

Choose Destination
J Exp Biol. 2014 Jun 15;217(Pt 12):2037-40. doi: 10.1242/jeb.099523. Epub 2014 Apr 15.

Foot speed, foot-strike and footwear: linking gait mechanics and running ground reaction forces.

Author information

1
Southern Methodist University, Locomotor Performance Laboratory, 5538 Dyer Street, Department of Applied Physiology and Wellness, Dallas, TX 75206, USA.
2
Southern Methodist University, Locomotor Performance Laboratory, 5538 Dyer Street, Department of Applied Physiology and Wellness, Dallas, TX 75206, USA pweyand@smu.edu.

Abstract

Running performance, energy requirements and musculoskeletal stresses are directly related to the action-reaction forces between the limb and the ground. For human runners, the force-time patterns from individual footfalls can vary considerably across speed, foot-strike and footwear conditions. Here, we used four human footfalls with distinctly different vertical force-time waveform patterns to evaluate whether a basic mechanical model might explain all of them. Our model partitions the body's total mass (1.0 Mb) into two invariant mass fractions (lower limb=0.08, remaining body mass=0.92) and allows the instantaneous collisional velocities of the former to vary. The best fits achieved (R(2) range=0.95-0.98, mean=0.97 ± 0.01) indicate that the model is capable of accounting for nearly all of the variability observed in the four waveform types tested: barefoot jog, rear-foot strike run, fore-foot strike run and fore-foot strike sprint. We conclude that different running ground reaction force-time patterns may have the same mechanical basis.

KEYWORDS:

Barefoot running; Biomechanics; Force-motion; Running performance

PMID:
24737756
DOI:
10.1242/jeb.099523
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center