Format

Send to

Choose Destination
Toxicol Appl Pharmacol. 2014 Aug 15;279(1):63-75. doi: 10.1016/j.taap.2014.03.026. Epub 2014 Apr 12.

Attenuation of Aβ25-35-induced parallel autophagic and apoptotic cell death by gypenoside XVII through the estrogen receptor-dependent activation of Nrf2/ARE pathways.

Author information

1
Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China.
2
Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China. Electronic address: sunguibo@126.com.
3
Jilin Agricultural University, Changchun, Jilin 130021, PR China.
4
Center of Cardiology, People's Hospital of Jilin Province, Changchun, 130021, Jilin, PR China.
5
Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China.
6
Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China. Electronic address: sun_xiaobo163@163.com.

Abstract

Amyloid-beta (Aβ) has a pivotal function in the pathogenesis of Alzheimer's disease. To investigate Aβ neurotoxicity, we used an in vitro model that involves Aβ25-35-induced cell death in the nerve growth factor-induced differentiation of PC12 cells. Aβ25-35 (20μM) treatment for 24h caused apoptotic cell death, as evidenced by significant cell viability reduction, LDH release, phosphatidylserine externalization, mitochondrial membrane potential disruption, cytochrome c release, caspase-3 activation, PARP cleavage, and DNA fragmentation in PC12 cells. Aβ25-35 treatment led to autophagic cell death, as evidenced by augmented GFP-LC3 puncta, conversion of LC3-I to LC3-II, and increased LC3-II/LC3-I ratio. Aβ25-35 treatment induced oxidative stress, as evidenced by intracellular ROS accumulation and increased production of mitochondrial superoxide, malondialdehyde, protein carbonyl, and 8-OHdG. Phytoestrogens have been proved to be protective against Aβ-induced neurotoxicity and regarded as relatively safe targets for AD drug development. Gypenoside XVII (GP-17) is a novel phytoestrogen isolated from Gynostemma pentaphyllum or Panax notoginseng. Pretreatment with GP-17 (10μM) for 12h increased estrogen response element reporter activity, activated PI3K/Akt pathways, inhibited GSK-3β, induced Nrf2 nuclear translocation, augmented antioxidant responsive element enhancer activity, upregulated heme oxygenase 1 (HO-1) expression and activity, and provided protective effects against Aβ25-35-induced neurotoxicity, including oxidative stress, apoptosis, and autophagic cell death. In conclusion, GP-17 conferred protection against Aβ25-35-induced neurotoxicity through estrogen receptor-dependent activation of PI3K/Akt pathways, inactivation of GSK-3β and activation of Nrf2/ARE/HO-1 pathways. This finding might provide novel insights into understanding the mechanism for neuroprotective effects of phytoestrogens or gypenosides.

KEYWORDS:

Alzheimer's disease; Apoptosis; Autophagy; Nuclear factor-erythroid 2-related factor 2; Oxidative stress; Phytoestrogen

PMID:
24726523
DOI:
10.1016/j.taap.2014.03.026
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center