Send to

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2014 Apr 23;136(16):5892-5. doi: 10.1021/ja502044j. Epub 2014 Apr 11.

Bioelectrochemical oxidation of water.

Author information

Instituto de Catalisis y Petroleoquimica, CSIC , C/Marie Curie, 2, L10, 28049 Madrid, Spain.


The electrolysis of water provides a link between electrical energy and hydrogen, a high energy density fuel and a versatile energy carrier, but the process is very expensive. Indeed, the main challenge is to reduce energy consumption for large-scale applications using efficient renewable catalysts that can be produced at low cost. Here we present for the first time that laccase can catalyze electrooxidation of H2O to molecular oxygen. Native and laboratory-evolved laccases immobilized onto electrodes serve as bioelectrocatalytic systems with low overpotential and a high O2 evolution ratio against H2O2 production during H2O electrolysis. Our results open new research ground on H2O splitting, as they overcome serious practical limitations associated with artificial electrocatalysts currently used for O2 evolution.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center